parallel_executor.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import multiprocessing
17 18 19
from . import core
from . import framework
from . import executor
M
minqiyang 已提交
20
from .. import compat as cpt
J
JiayiFeng 已提交
21
import warnings
Y
Yu Yang 已提交
22
import sys
M
minqiyang 已提交
23
import six
C
chengduoZH 已提交
24
import os
25

X
Xin Pan 已提交
26
__all__ = ['ParallelExecutor']
Y
yuyang18 已提交
27 28

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
Y
yuyang18 已提交
29
BuildStrategy = core.ParallelExecutor.BuildStrategy
30 31


32 33 34 35 36 37 38 39 40
def _is_pserver_mode(main_program):
    main = main_program if main_program \
        else framework.default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


41
class ParallelExecutor(object):
C
chengduoZH 已提交
42
    """
C
chengduo 已提交
43 44 45 46 47 48 49 50 51
    ParallelExecutor is designed for data parallelism, which focuses on distributing
    the data across different nodes and every node operates on the data in parallel.
    If you use ParallelExecutor to run the current program on GPU, the node means GPU
    device, and ParallelExecutor will get the available GPU device automatically on
    the current machine. If you use ParallelExecutor to run the current program on CPU,
    the node means the CPU device, and you can specify the CPU device number by adding
    'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
    is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
    of CPUs in the system.
C
chengduoZH 已提交
52 53 54 55 56 57

    Args:
        use_cuda (bool): Whether to use CUDA or not.
        loss_name (str): The loss name must set in training. Default None.
        main_program (Program): The program that need to run, if not provided,
            then default_main_program will be used. Default None.
C
chengduo 已提交
58
        share_vars_from(ParallelExecutor): If provide, it will share variables
C
chengduoZH 已提交
59
            from the specified ParallelExecutor. Default None.
C
chengduo 已提交
60 61 62 63 64 65 66 67 68
        exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
            the program in ParallelExecutor, for example how many threads are used to
            execute the program, how many iterations to clean up the temp variables
            which is generated during execution. For more information, please refer
            to fluid.ExecutionStrategy. Default None.
        build_strategy(BuildStrategy): build_strategy is used to control how to
            build the SSA Graph in ParallelExecutor by setting the property,
            for example reduce_strategy, gradient_scale_strategy. For more information,
            please refer to fluid.BuildStrategy. Default None.
C
chengduoZH 已提交
69 70 71
        num_trainers(int): If greater than 1, NCCL will be initialized with
            multiple rank of nodes, each node should have same number of GPUs.
            Distributed training will be enabled then. Default 1.
W
Wu Yi 已提交
72
        trainer_id(int): Must use together with num_trainers. trainer_id is the
C
chengduoZH 已提交
73
            "rank" of current node starts from 0. Default 0.
W
Wu Yi 已提交
74
        scope(Scope): scope to run with, default use fluid.global_scope().
C
chengduoZH 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Returns:
        ParallelExecutor: The initialized ParallelExecutor object.

    Raises:
        TypeError: If share_vars_from is provided, but not ParallelExecutor object.

    Examples:
        .. code-block:: python

          train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
          test_exe = fluid.ParallelExecutor(use_cuda=True,
                                            main_program=test_program,
                                            share_vars_from=train_exe)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
          test_loss, = test_exe.run([loss.name], feed=feed_dict)
    """

X
Xin Pan 已提交
94 95
    def __init__(self,
                 use_cuda,
96 97
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
98
                 share_vars_from=None,
Y
yuyang18 已提交
99
                 exec_strategy=None,
Y
yuyang18 已提交
100
                 build_strategy=None,
T
typhoonzero 已提交
101
                 num_trainers=1,
102
                 trainer_id=0,
X
Xin Pan 已提交
103
                 scope=None):
104
        # step1: get places, the places are used in run too.
X
Xin Pan 已提交
105
        self._places = []
106
        if use_cuda:
107 108 109 110
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
111 112 113 114
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
115
        else:
C
chengduoZH 已提交
116 117
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
118
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
X
Xin Pan 已提交
119
        assert self._places, "no place for execution"
120

121
        # step2: init exec_strategy
Y
yuyang18 已提交
122 123
        if exec_strategy is None:
            exec_strategy = ExecutionStrategy()
124
        exec_strategy.use_cuda = use_cuda
Y
yuyang18 已提交
125
        if exec_strategy.num_threads == 0:
X
Xin Pan 已提交
126 127 128
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduoZH 已提交
129
                exec_strategy.num_threads = len(self._places) * 4
X
Xin Pan 已提交
130
            else:
C
chengduoZH 已提交
131 132
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
133
                exec_strategy.num_threads = cpu_num * 2
134

135
        # step3: init build_strategy
Y
yuyang18 已提交
136 137
        if build_strategy is None:
            build_strategy = BuildStrategy()
138
        build_strategy.num_trainers = num_trainers
139
        build_strategy.trainer_id = trainer_id
140 141 142 143 144
        # FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
        # num_trainers is 1, so the current fields of build_strategy doesn't tell if
        # it's distributed model.
        build_strategy.is_distribution = _is_pserver_mode(
            main_program) or num_trainers > 1
145

146 147 148
        # step4: get main_program, scope, local_scopes
        main = main_program if main_program \
            else framework.default_main_program()
D
dzhwinter 已提交
149 150
        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
151 152 153 154
        if build_strategy.memory_optimize is True:
            build_strategy.memory_optimize = False if main._is_mem_optimized else True
        if build_strategy.enable_inplace is True:
            build_strategy.enable_inplace = False if main._is_mem_optimized else True
155 156 157 158 159 160 161 162
        scope = scope if scope is not None else executor.global_scope()

        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")

        local_scopes = share_vars_from.executor.local_scopes()\
            if share_vars_from else []
163

164
        # step5: check trainers_endpoints, it is used for distribution.
165 166 167
        trainers_endpoints = main._trainers_endpoints
        if num_trainers > 1 and trainers_endpoints:
            assert num_trainers == len(
168
                trainers_endpoints), "num_trainers == len(endpoints)"
169 170
            build_strategy.trainers_endpoints = trainers_endpoints

C
chengduo 已提交
171
        # step6: get persistable_vars, places. persistable_vars
172 173 174
        # need be broadcast to other local_scope.
        persistable_vars = set([
            cpt.to_text(v.name) for v in [
175 176 177
                var for var in main.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
178 179 180 181 182 183
        ])

        def place_obj(place):
            p = core.Place()
            p.set_place(place)
            return p
184

185 186
        places = list(map(place_obj, self._places))

C
chengduo 已提交
187
        # step7: init ParallelExecutor
188
        self.executor = core.ParallelExecutor(
189
            places, persistable_vars, main.desc,
190 191
            cpt.to_text(loss_name) if loss_name else six.u(''), scope,
            local_scopes, exec_strategy, build_strategy)
192

193 194
        self.scope = scope

195
    def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
X
Xin Pan 已提交
196
        """
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
C
chengduoZH 已提交
205

Y
Yu Yang 已提交
206 207 208 209 210 211
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
C
chengduoZH 已提交
212

Y
Yu Yang 已提交
213 214 215 216 217 218 219 220 221 222
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

Y
Yu Yang 已提交
223 224
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
225 226 227
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
C
chengduoZH 已提交
228
                to each device. Default None.
Y
Yu Yang 已提交
229
            feed_dict: Alias for feed parameter, for backward compatibility.
C
chengduoZH 已提交
230
                This parameter has been deprecated. Default None.
C
chengduo 已提交
231
            return_numpy(bool): Whether converts the fetched tensor to numpy.
232
                Default: True.
C
chengduoZH 已提交
233 234 235

        Returns:
            List: The fetched result list.
Y
Yu Yang 已提交
236

C
chengduoZH 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        Raises:
            ValueError: If the feed is a list, but its length is not equal the
                length of active places, or its element's is not dict.

        NOTES:
            1. If the feed's type is dict, the number of data that feeds to
               ParallelExecutor must be bigger than active places. Otherwise,
               it will throw exception from C++ side. Special attention should be
               paid to check whether the last batch of the dataset is bigger
               than active places.
            2. If active places are more than one, the fetch results for each
               variable is a list, and each element of this list is the variable of
               respective active place.

        Examples:
            .. code-block:: python
Y
Yu Yang 已提交
253

C
chengduoZH 已提交
254 255 256 257 258
                pe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                            loss_name=avg_cost.name,
                                            main_program=fluid.default_main_program())
                loss = pe.run(feed=feeder.feed(cur_batch),
                              fetch_list=[avg_cost.name]))
X
Xin Pan 已提交
259
        """
260
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
261
            feed = feed_dict
262 263 264
            print(
                "`feed_dict` is deprecated. Please use `feed=`",
                file=sys.stderr)
Y
Yu Yang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
280
            if len(feed) != len(self._places):
Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
296
                        tmp.set(tensor, self._places[i])
Y
Yu Yang 已提交
297 298 299 300
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
301

X
polish  
Xin Pan 已提交
302
        fetch_var_name = 'fetch'
303
        self.executor.run(fetch_list, fetch_var_name)
304
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
305

C
chengduo 已提交
306 307 308
        if return_numpy:
            return executor.as_numpy(arr)

309
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
310

Y
Yu Yang 已提交
311 312
    @property
    def device_count(self):
313
        return len(self._places)