control_flow.py 62.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31 32 33
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
    'equal', 'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
34 35
]

Y
Yu Yang 已提交
36

37
def split_lod_tensor(input, mask, level=0):
38 39 40 41
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
42 43
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
44 45 46 47 48

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
49
        level(int): The specific lod level to split.
50 51

    Returns:
Q
qiaolongfei 已提交
52 53 54 55
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
56 57 58 59

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
60
          x = fluid.layers.data(name='x', shape=[1])
61 62
          x.persistable = True

Q
qiaolongfei 已提交
63
          y = fluid.layers.data(name='y', shape=[1])
64 65
          y.persistable = True

Q
qiaolongfei 已提交
66
          out_true, out_false = fluid.layers.split_lod_tensor(
67
                input=x, mask=y, level=level)
68

69
    """
70
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
71 72
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
73 74 75 76 77 78 79 80 81 82 83 84
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


85
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
86 87 88 89 90
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
91 92 93
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
94 95 96 97 98 99 100

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
101
        level(int): The specific lod level to merge.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
121
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
122
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
123 124 125 126 127 128 129 130 131 132 133
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
134 135 136 137 138 139 140
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
141 142
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
143 144 145 146 147 148 149 150 151 152
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
153 154 155 156 157 158 159 160 161
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
162
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
163 164
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
165 166

    Returns:
Y
yangyaming 已提交
167
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
168

Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170
    Examples:
Y
Yan Chunwei 已提交
171

Y
Yan Chunwei 已提交
172 173
        .. code-block:: python

Y
Yan Chunwei 已提交
174 175 176
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
177 178 179 180
    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
181
        inputs={'In': input},
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
190
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
191
        })
Y
Yan Chunwei 已提交
192 193


Y
Yu Yang 已提交
194 195
class BlockGuard(object):
    """
196 197 198 199
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
200 201
    """

202 203
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
204
            raise TypeError("BlockGuard takes a program")
205
        self.main_program = main_program
Y
Yu Yang 已提交
206 207

    def __enter__(self):
W
Wu Yi 已提交
208
        self.main_program._create_block()
Y
Yu Yang 已提交
209 210

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
211
        self.main_program._rollback()
Y
Yu Yang 已提交
212 213 214 215 216
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
217 218 219 220 221
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
222 223
    """

Y
Yu Yang 已提交
224
    def __init__(self, rnn):
X
Xin Pan 已提交
225
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
226
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
227
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
228 229 230 231
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
232
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
233 234

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
235 236
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
237
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
238
        self.rnn._complete_op()
Y
Yang Yang 已提交
239 240
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
241 242 243 244


class StaticRNNMemoryLink(object):
    """
245 246 247 248
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
249 250 251 252 253 254 255 256 257


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
258 259 260 261 262 263 264 265 266
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
267 268 269 270 271 272
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
273 274 275 276
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

277 278
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
279 280 281 282 283 284 285 286
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
287
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
288 289 290 291 292

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

293 294 295 296 297 298 299
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
300 301 302 303 304 305 306 307 308
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
309 310
        self._assert_in_rnn_block_('memory')
        if init is None:
311
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
312
                raise ValueError(
313
                    "if init is None, memory at least need shape and batch_ref")
314
            parent_block = self._parent_block()
Y
Yu Yang 已提交
315 316
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
317
            boot_var = parent_block.create_var(
318 319
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
320
                dtype=batch_ref.dtype,
321
                persistable=False)
Y
Yu Yang 已提交
322 323

            parent_block.append_op(
324 325
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
326 327 328
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
329
                    'shape': boot_var.shape,
F
fengjiayi 已提交
330
                    'dtype': boot_var.dtype,
331 332
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
333 334 335 336 337
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
338
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
339
                dtype=init.dtype,
Y
Yu Yang 已提交
340 341 342 343 344 345 346 347 348 349
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
350 351
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
352 353 354
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
355
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
356 357 358 359 360 361 362 363
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
364
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
365 366 367 368
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
369
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
370

371
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
372 373
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
374
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
375 376 377 378 379 380 381 382 383 384 385 386

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

387
    def _parent_block(self):
388
        prog = self.helper.main_program
Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

404
    def _complete_op(self):
405 406
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
407
        parent_block = self._parent_block()
Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
441
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
442 443 444 445
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
446 447
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
448 449 450 451 452

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
453
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
469
                'sub_block': rnn_block
Y
Yu Yang 已提交
470
            })
Y
Yu Yang 已提交
471 472


Y
Yang Yang(Tony) 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
488
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
489 490 491 492
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
493 494 495 496
    """
    while loop control flow.

    Args:
497
        cond(Variable): condition used to compare.
C
chengduo 已提交
498
        is_test(bool): A flag indicating whether execution is in test phase.
499
        name(str): The name of this layer.
X
Xin Pan 已提交
500 501 502 503

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
504 505 506
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
507

X
Xin Pan 已提交
508 509 510 511 512 513 514
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
515 516
    """

Y
Yang Yang(Tony) 已提交
517 518 519 520
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
521
    def __init__(self, cond, is_test=False, name=None):
522
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
523 524 525 526
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
527
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
528 529 530 531
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
532
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
533 534 535 536

    def block(self):
        return WhileGuard(self)

537
    def _complete(self):
Y
Yang Yang(Tony) 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
557 558 559
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
560 561 562 563 564 565 566

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
567 568 569 570
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
571 572 573 574
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
575 576
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
577 578


579
def lod_rank_table(x, level=0):
580 581
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
582 583
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
584
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
585 586 587
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
588 589 590 591

        .. code-block:: text

            x is a LoDTensor:
592 593
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
594 595
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
596 597 598
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
599

Y
yangyaming 已提交
600 601 602 603 604 605 606 607 608
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
609 610 611 612

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
613 614
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
615 616 617 618 619 620 621 622

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
623
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
624
            out = layers.lod_rank_table(x=x, level=0)
625
    """
Y
Yu Yang 已提交
626 627 628
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
629
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
630 631 632 633 634 635
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
636 637


Y
yuyang18 已提交
638
@templatedoc()
639
def max_sequence_len(rank_table):
Y
yuyang18 已提交
640 641 642 643 644 645 646 647
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
648 649

    Args:
Y
yuyang18 已提交
650
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
651 652

    Returns:
Y
yuyang18 已提交
653
        ${out_comment}.
F
fengjiayi 已提交
654 655
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
656
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
657 658 659 660 661 662 663
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


664
def lod_tensor_to_array(x, table):
665
    """
F
fengjiayi 已提交
666 667
    Convert a LoDTensor to a LoDTensorArray.

668 669 670 671 672
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
673
    Users should not use it directly.
674 675

    Args:
F
fengjiayi 已提交
676
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
677 678
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
679
                                descending order. It is generally generated
F
fengjiayi 已提交
680
                                by `layers.lod_rank_table()` API.
681 682

    Returns:
F
fengjiayi 已提交
683
        Variable: The LoDTensorArray that has been converted from the input tensor.
684 685 686 687 688 689 690

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
691
    """
692 693
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
694
        name=unique_name.generate("lod_tensor_to_array"),
695
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
696
        dtype=x.dtype)
697 698 699 700 701 702 703 704
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


705
def array_to_lod_tensor(x, table):
706
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
707 708

    Args:
709
        x (Variable|list): The lod tensor array to be converted to a tensor.
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
725
    """
726
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
727
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
728 729 730 731 732 733 734 735
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


736
def increment(x, value=1.0, in_place=True):
737
    """
S
sneaxiy 已提交
738
    This function performs an operation that increments the value in the
739
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
740 741
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
742 743 744 745 746 747 748

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
749
        Variable: The elementwise-incremented object.
750 751 752 753

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
754 755
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
756
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
757
    """
Y
Yu Yang 已提交
758
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
759
    if not in_place:
X
Xin Pan 已提交
760
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
761 762
    else:
        out = x
Y
Yu Yang 已提交
763 764 765
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
766
        outputs={'Out': [out]},
767
        attrs={'step': float(value)})
Y
Yang Yu 已提交
768
    return out
Y
Yu Yang 已提交
769 770


771
def array_write(x, i, array=None):
772 773 774 775 776
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
777 778 779

    Args:
        x (Variable|list): The input tensor from which the data will be read.
780 781 782 783 784 785 786 787
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

788
    Returns:
789
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
790 791

    Examples:
D
dzhwinter 已提交
792
        .. code-block:: python
793 794 795 796

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
797
    """
Y
Yu Yang 已提交
798 799 800 801 802
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
803
            dtype=x.dtype)
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


812
def create_array(dtype):
813
    """
Q
qiaolongfei 已提交
814
    **Create LoDTensorArray**
815

Q
qiaolongfei 已提交
816 817
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
818 819

    Args:
Q
qiaolongfei 已提交
820
        dtype (int|float): The data type of the elements in the lod_tensor_array.
821 822

    Returns:
823
        Variable: The lod_tensor_array variable storing the elements of data type.
824 825 826 827 828 829 830

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
831 832 833 834 835 836 837
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
838
@templatedoc()
839
def less_than(x, y, force_cpu=None, cond=None):
840
    """
Y
yuyang18 已提交
841
    ${comment}
842

Y
yuyang18 已提交
843 844
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
845 846

    Args:
Y
yuyang18 已提交
847 848 849
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
850 851 852
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
853
        ${out_comment}.
854
    """
Y
Yang Yang(Tony) 已提交
855 856
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
857
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
858 859
        cond.stop_gradient = True

Y
yuyang18 已提交
860 861 862 863 864 865
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
866
    helper.append_op(
J
JiayiFeng 已提交
867 868 869 870
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
871
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
872 873 874
    return cond


875
def equal(x, y, cond=None):
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
894
        cond = helper.create_variable_for_type_inference(dtype='bool')
895 896 897 898 899 900 901 902
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


903
def array_read(array, i):
904 905
    """
    This function performs the operation to read the data in as an
906
    LOD_TENSOR_ARRAY.
907 908 909 910 911 912

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
913

914
        And:
915

916 917 918 919 920 921
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
922
    Args:
923 924 925
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
926 927
    Returns:
        Variable: The tensor type variable that has the data written to it.
928

K
kavyasrinet 已提交
929
    Examples:
930 931
        .. code-block:: python

K
kavyasrinet 已提交
932 933 934
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
935
    """
Y
Yu Yang 已提交
936 937 938 939 940
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
941
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
942 943 944 945 946 947
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
948 949


950
def shrink_memory(x, i, table):
951
    """
Y
yuyang18 已提交
952
    This function creates an operator to shrink rnn memory using the RankTable
953
    as mentioned in the input parameter.
Y
yuyang18 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
974
    """
Y
Yang Yu 已提交
975
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
976
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
977
    helper.append_op(
Y
Yang Yu 已提交
978
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
979 980 981 982 983 984
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
985 986


987
def array_length(array):
988
    """
Q
qiaolongfei 已提交
989
    **Get the Length of Input LoDTensorArray**
990 991

    This function performs the operation to find the length of the input
992
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
993

994 995
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
996 997 998 999 1000 1001 1002 1003
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1004
        .. code-block:: python
K
kavyasrinet 已提交
1005 1006 1007 1008 1009

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1010

1011
    """
Y
Yang Yu 已提交
1012
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1013
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1014 1015 1016 1017
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1018 1019 1020


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1021
    """
1022 1023 1024
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1025 1026 1027
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1069
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1070 1071 1072 1073
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1074
        self.is_scalar_condition = is_scalar_condition
1075
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1100
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1101 1102 1103
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1104 1105 1106 1107 1108
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1109 1110

        step_scope = parent_block.create_var(
1111
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1112 1113 1114
        parent_block.append_op(
            type='conditional_block',
            inputs={
1115 1116
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1117 1118 1119
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1120 1121 1122 1123 1124 1125 1126
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1127
    """
Q
qiaolongfei 已提交
1128 1129
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1130 1131 1132 1133

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1134

Q
qiaolongfei 已提交
1135
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1136 1137 1138 1139

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1140 1141 1142 1143

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1156
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1157 1158 1159
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1160 1161 1162

    """

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1192 1193
        """
        create a default case for this switch
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1262

X
improve  
Xin Pan 已提交
1263
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1264
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1265 1266
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1267 1268
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1269 1270
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1271 1272 1273 1274
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1275 1276 1277
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1278 1279 1280
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1281 1282 1283 1284
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1285
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1286 1287
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1288
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1300
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1301
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1302
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1303
                dtype=x.dtype)
Y
Yu Yang 已提交
1304 1305

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1306
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1307
                dtype=x.dtype)
Y
Yu Yang 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1326
    def _parent_block(self):
Y
Yu Yang 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1342
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1343 1344 1345 1346 1347
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1348 1349
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1350
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1351 1352 1353
            out_table.append(outside_out)

            # assign local var to outside
1354
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1355 1356 1357 1358

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1359
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1378
                    level=0))
Y
Yu Yang 已提交
1379
        return rlist
1380 1381 1382


class DynamicRNN(object):
Y
yuyang18 已提交
1383
    """
Y
yuyang18 已提交
1384 1385 1386
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
C
chengduoZH 已提交
1414 1415 1416 1417
    
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
Y
yuyang18 已提交
1418
    """
1419 1420 1421 1422
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1423 1424
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1425 1426 1427 1428
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1429
        self.zero_idx = None
1430 1431 1432
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1433
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1434 1435 1436 1437 1438
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1439
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1440 1441
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1442

Y
yuyang18 已提交
1443 1444
        Args:
            x(Variable): The input sequence.
1445
            level(int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1446 1447 1448 1449

        Returns:
            The current timestep in the input sequence.
        """
1450 1451 1452
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1453
                "step_input() can only take a Variable as its input.")
1454 1455 1456
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1457
                name=unique_name.generate('lod_rank_table'),
1458 1459 1460 1461 1462
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1463 1464
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1465
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1466 1467
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1478 1479
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1480 1481

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1482
            name=unique_name.generate('dynamic_rnn_input_array'),
1483 1484 1485 1486 1487 1488 1489 1490
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1491
        return array_read(array=input_array, i=self.step_idx)
1492

Y
yangyaming 已提交
1493
    def static_input(self, x):
Y
yuyang18 已提交
1494 1495 1496
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
H
haowang101779990 已提交
1497

Y
yuyang18 已提交
1498 1499 1500 1501 1502 1503
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1513
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1523
    @signature_safe_contextmanager
1524
    def block(self):
Y
yuyang18 已提交
1525
        """
1526
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1527
        """
1528 1529
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1530 1531
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1532 1533 1534 1535
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1536
            increment(x=self.step_idx, value=1.0, in_place=True)
1537 1538

            for new_mem, mem_array in self.mem_link:
1539 1540
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1541 1542 1543 1544 1545
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1546 1547 1548 1549 1550

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1551
                    x=each_array, table=self.lod_rank_table))
1552 1553

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1554 1555 1556
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1557
        if self.status != DynamicRNN.AFTER_RNN:
1558 1559
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1560 1561 1562 1563 1564
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1565 1566 1567 1568 1569 1570
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1571
        """
Y
yuyang18 已提交
1572
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

H
haowang101779990 已提交
1621
            shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
Y
yuyang18 已提交
1622 1623 1624

            value(float): the initalized value.

H
haowang101779990 已提交
1625
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1626 1627 1628 1629

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1630
            The memory variable.
Y
yuyang18 已提交
1631
        """
1632
        self._assert_in_rnn_block_('memory')
1633
        self._init_zero_idx_()
1634 1635 1636 1637 1638
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1639 1640 1641 1642 1643 1644 1645 1646
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1647
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1658
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1659
                name=unique_name.generate('dynamic_rnn_mem_array'),
1660 1661 1662 1663
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1664
                inputs={'X': init_tensor,
1665 1666
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1667
            retv = array_read(array=mem_array, i=self.step_idx)
1668
            retv = shrink_memory(
1669
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1670 1671 1672 1673 1674 1675 1676 1677 1678
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1679
                name=unique_name.generate('mem_init'), dtype=dtype)
1680
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1681 1682
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1700 1701 1702
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1703
        
Y
yuyang18 已提交
1704 1705 1706 1707 1708 1709 1710
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1728
        """
1729
        Mark the RNN output variables.
Y
yuyang18 已提交
1730 1731 1732 1733 1734 1735 1736

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1737 1738 1739 1740
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1741
                name=unique_name.generate("_".join(
1742 1743 1744 1745 1746 1747
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1776 1777


1778
@autodoc()
Y
Yang Yu 已提交
1779 1780 1781 1782 1783
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
1784
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1785 1786 1787 1788 1789 1790
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1791 1792


1793
def is_empty(x, cond=None):
1794
    """
F
fengjiayi 已提交
1795
    Test whether a Variable is empty.
1796 1797

    Args:
F
fengjiayi 已提交
1798
        x (Variable): The Variable to be tested.
1799
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1800
                              of given 'x'. Default: None
1801 1802

    Returns:
F
fengjiayi 已提交
1803
        Variable: A bool scalar. True if 'x' is an empty Variable.
1804 1805 1806

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1807
                   not bool.
1808 1809 1810 1811

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1812 1813 1814
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1815 1816 1817
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
1818
        cond = helper.create_variable_for_type_inference(dtype='bool')
1819 1820 1821 1822 1823 1824 1825 1826 1827
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond