convert_to_mixed_precision.cc 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

W
Wilber 已提交
17 18
#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
W
Wilber 已提交
21
#include <unordered_map>
22
#include <unordered_set>
23
#include <utility>
24 25 26

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
27
#include "paddle/fluid/framework/framework.pb.h"
28 29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
31
#include "paddle/fluid/framework/ir/node.h"
32 33
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
34
#include "paddle/fluid/framework/var_desc.h"
35 36
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_clean_pass.h"
37
#include "paddle/fluid/inference/io.h"
38
#include "paddle/phi/common/bfloat16.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/phi/common/float16.h"
41
#include "paddle/phi/common/layout.h"
42
#include "paddle/phi/common/place.h"
43 44 45 46 47 48 49
#include "paddle/phi/core/tensor_meta.h"

namespace paddle {
namespace inference {
namespace analysis {

namespace {
50 51
using VarType = framework::proto::VarType;

W
Wilber 已提交
52
bool PhiKernelSupportPrecision(
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
W
Wilber 已提交
69 70 71 72 73 74 75
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool res = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, data_type, layout);
  res |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, data_type, layout);

  if (!res) {
76
    auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
W
Wilber 已提交
77 78 79
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (auto& kern_pair : it->second) {
80
        if (platform::is_gpu_place(kern_pair.first.place_) &&
81
            kern_pair.first.data_type_ == VarType::FP16) {
W
Wilber 已提交
82
          res = true;
83
          break;
W
Wilber 已提交
84 85 86 87
        }
      }
    }
  }
88 89 90
  return res;
}

91
class ConvertToMixedPrecisionPass {
92 93
  using BlockID = size_t;

94 95 96 97 98 99 100 101 102
 public:
  explicit ConvertToMixedPrecisionPass(
      const std::string& model_file,
      const std::string& params_file,
      const std::string& mixed_model_file,
      const std::string& mixed_params_file,
      phi::DataType mixed_precision,
      phi::Backend backend,
      bool keep_io_types,
103
      const std::unordered_set<std::string>& black_list)
104 105 106 107 108 109 110 111 112
      : model_file_(model_file),
        params_file_(params_file),
        mixed_model_file_(mixed_model_file),
        mixed_params_file_(mixed_params_file),
        mixed_precision_(mixed_precision),
        backend_(backend),
        keep_io_types_(keep_io_types),
        black_list_(black_list),
        place_(paddle::CPUPlace()),
113 114 115 116 117 118 119 120
        executor_(place_) {
    black_list_.insert("assign");
    black_list_.insert("fill_constant");
    black_list_.insert("assign_value");
    black_list_.insert("eye");
    black_list_.insert("fill_any_like");
    black_list_.insert("fill_constant_batch_size_like");
  }
121

122 123 124 125
  void Run();

 private:
  void LoadAndPrepare();
126
  inline bool VarNodeHasDtype(framework::ir::Node* node);
127 128 129
  void ConvertAllFp64ToFp32(framework::ir::Graph* graph);
  void FixCastAttr(framework::ir::Graph* graph);
  void SaveMixedModel();
130
  void ConvertTensorDtype(BlockID block_idx);
131
  void ProcessInputNode(bool support_precision,
132 133
                        framework::ir::Node* in_node,
                        framework::ir::Node* op_node,
134 135
                        int* suffix,
                        framework::BlockDesc* block_desc,
136 137
                        VarType::Type to_type,
                        BlockID block_idx);
138

139 140 141 142
  void ProcessOutputNode(BlockID block_idx,
                         framework::ir::Node* var_node,
                         VarType::Type to_type);
  inline bool IsFloatVarType(VarType::Type type);
143

144
  bool OutShouldNotConvert(framework::ir::Node* var_node);
145
  // Just process special cases for weights conversion.
146
  bool WeightsShouldNotConvert(framework::ir::Node* var_node);
147 148 149

  // To support multi block, we need to consider a lot of special cases.
  // Return Node* which first appers in block.
150 151
  framework::ir::Node* GetRealVarNode(BlockID block_idx,
                                      framework::ir::Node* node);
152
  void FindVarsInMultiBlock();
153
  inline bool VarIsMultiPrecisionOpsOut(BlockID block_idx,
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                                        framework::ir::Node* op_node);

 private:
  // A trick. Patch for strange op, which input name equal to output name, such
  // as `fused_multi_transformer`
  void PatchForStrangeOp();

 private:
  std::string model_file_;
  std::string params_file_;
  std::string mixed_model_file_;
  std::string mixed_params_file_;
  phi::DataType mixed_precision_;
  phi::Backend backend_;
  bool keep_io_types_;
  std::unordered_set<std::string> black_list_;
  paddle::CPUPlace place_;
  framework::Executor executor_;
  framework::Scope scope_;

  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map_;
175 176 177 178
  std::unordered_map<std::string, std::pair<VarType::Type, BlockID>>
      vars_in_multi_block_with_pair_;
  std::unordered_map<std::string, std::vector<std::string>>
      vars_in_multi_block_with_ops_;
179 180 181 182 183 184 185
  int suffix_{0};

  std::unique_ptr<framework::ProgramDesc> program_desc_{nullptr};
  std::unique_ptr<framework::ir::Graph> main_graph_{nullptr};
  std::vector<framework::ir::Graph*> graphes_;
};

186 187 188 189 190 191 192 193 194 195 196 197
framework::ir::Node* ConvertToMixedPrecisionPass::GetRealVarNode(
    BlockID block_idx, framework::ir::Node* var_node) {
  CHECK_EQ(var_node->IsVar(), true);

  if (vars_in_multi_block_with_pair_.count(var_node->Name())) {
    auto origin_blockId =
        vars_in_multi_block_with_pair_.at(var_node->Name()).second;
    if (block_idx != origin_blockId) {
      auto* graph = graphes_[origin_blockId];
      for (auto* node : graph->Nodes()) {
        if (node->Name() == var_node->Name()) {
          return node;
198 199 200 201 202
        }
      }
    }
  }

203
  return var_node;
204 205
}

206 207 208 209 210 211 212
inline bool ConvertToMixedPrecisionPass::VarNodeHasDtype(
    framework::ir::Node* var_node) {
  CHECK_EQ(var_node->IsVar(), true);
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
213 214 215 216 217 218
}

// op1(fp32) -> var1, op2(fp16) -> var1
// if and only if op1 and op2 both support fp16, we convert op1 and op2's
// precision.
inline bool ConvertToMixedPrecisionPass::VarIsMultiPrecisionOpsOut(
219
    BlockID block_idx, framework::ir::Node* op_node) {
220
  CHECK_EQ(op_node->IsOp(), true);
221 222 223 224 225 226 227 228 229

  for (auto* var_node : op_node->outputs) {
    if (!var_node->IsVar()) continue;
    auto* real_var_node = GetRealVarNode(block_idx, var_node);
    if (!real_var_node->Var()->Persistable() &&
        vars_in_multi_block_with_ops_.count(var_node->Name())) {
      for (const auto& op_type :
           vars_in_multi_block_with_ops_.at(var_node->Name())) {
        if (!OpSupportPrecision(
230
                op_type, backend_, mixed_precision_, black_list_)) {
231
          VLOG(2) << var_node->Name()
232
                  << " is multi precision op's out, so we skip convert to fp16";
233
          return true;
234 235 236 237
        }
      }
    }
  }
238
  return false;
239 240 241 242
}

void ConvertToMixedPrecisionPass::ProcessInputNode(
    bool support_precision,
243 244
    framework::ir::Node* in_node,
    framework::ir::Node* op_node,
245 246
    int* suffix,
    framework::BlockDesc* block_desc,
247 248 249 250 251 252
    VarType::Type to_type,
    BlockID block_idx) {
  if (!in_node->IsVar()) return;
  auto* real_node = GetRealVarNode(block_idx, in_node);
  if (!VarNodeHasDtype(real_node)) return;
  auto* graph = graphes_[block_idx];
253 254 255 256
  bool is_main_block = block_idx == 0;
  auto* in_var = real_node->Var();
  auto in_var_type = in_var->GetDataType();
  auto prev_type = in_var_type;
257
  bool is_in_multi_block = vars_in_multi_block_with_pair_.count(in_var->Name());
258 259

  if (!is_main_block && is_in_multi_block) {
260
    in_var_type = vars_in_multi_block_with_pair_.at(in_var->Name()).first;
261 262
  }
  if (support_precision) {
263
    if (in_var->Persistable() && in_var_type == VarType::FP32) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      if (WeightsShouldNotConvert(in_node)) return;
      in_var->SetDataType(to_type);
      in_var_type = to_type;
      VLOG(3) << "   in_node name " << in_var->Name() << " from " << prev_type
              << " to " << to_type;
    } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
               in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  } else {
    if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
        in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  }
}

void ConvertToMixedPrecisionPass::ProcessOutputNode(
300 301 302 303
    BlockID block_idx, framework::ir::Node* var_node, VarType::Type to_type) {
  if (!var_node->IsVar()) return;
  auto* real_node = GetRealVarNode(block_idx, var_node);
  if (!VarNodeHasDtype(real_node)) return;
304 305
  auto* out_var = real_node->Var();
  auto prev_type = out_var->GetDataType();
306
  if (out_var->GetDataType() == VarType::FP32) {
307 308 309 310 311 312 313
    if (OutShouldNotConvert(var_node)) return;
    out_var->SetDataType(to_type);
  }
  VLOG(3) << "   out_node name " << var_node->Name() << " from dtype "
          << prev_type << " to " << out_var->GetDataType();
}

314
// Just process special cases.
315 316
bool ConvertToMixedPrecisionPass::OutShouldNotConvert(
    framework::ir::Node* var_node) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}
342

343 344
bool ConvertToMixedPrecisionPass::WeightsShouldNotConvert(
    framework::ir::Node* var_node) {
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    } else if (op_desc->Type() == "fused_multi_transformer") {
      auto vecs = op_desc->Input("LnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("LnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
387 388 389 390 391
    }
  }

  return false;
}
392 393 394 395

inline bool ConvertToMixedPrecisionPass::IsFloatVarType(VarType::Type type) {
  return (type == VarType::FP16) || (type == VarType::FP32) ||
         (type == VarType::BF16);
W
Wilber 已提交
396
}
397

398 399 400 401 402
void ConvertToMixedPrecisionPass::LoadAndPrepare() {
  program_desc_ =
      inference::Load(&executor_, &scope_, model_file_, params_file_);
  main_graph_ = std::unique_ptr<framework::ir::Graph>(
      new framework::ir::Graph(*program_desc_));
403 404 405 406
  for (size_t i = 0; i < main_graph_->SubGraphsSize(); ++i) {
    auto* graph = main_graph_->GetSubGraph(i);
    graphes_.push_back(graph);
  }
407 408 409 410 411 412 413 414 415 416 417

  // Remove all control var
  IrInferCleanGraphPass pass;
  Argument arg;
  arg.SetMainGraphNotOwned(main_graph_.get());
  pass.Run(&arg);

  FindVarsInMultiBlock();
}

void ConvertToMixedPrecisionPass::FindVarsInMultiBlock() {
418 419 420 421 422 423 424 425 426 427
  std::unordered_set<std::string> all_var_names_set;
  std::vector<std::unordered_set<std::string>> block_var_names_set(
      program_desc_->Size());
  for (BlockID idx = 0; idx < program_desc_->Size(); ++idx) {
    for (auto* op : program_desc_->Block(idx).AllOps()) {
      const auto& in_names = op->InputArgumentNames();
      block_var_names_set[idx].insert(in_names.begin(), in_names.end());
      const auto& out_names = op->OutputArgumentNames();
      block_var_names_set[idx].insert(out_names.begin(), out_names.end());

428
      if (op->HasAttr("sub_block") == false) {
429 430 431
        for (const auto& name : out_names) {
          if (all_var_names_set.count(name)) {
            vars_in_multi_block_with_ops_[name].push_back(op->Type());
432 433 434
          }
        }
      }
435 436
      all_var_names_set.insert(block_var_names_set[idx].begin(),
                               block_var_names_set[idx].end());
W
Wilber 已提交
437
    }
438 439
  }

440 441 442 443 444 445 446 447 448 449 450 451 452
  CHECK_GT(program_desc_->Size(), 0U);
  for (BlockID idx = 0; idx < program_desc_->Size() - 1; ++idx) {
    for (BlockID jdx = idx + 1; jdx < program_desc_->Size(); ++jdx) {
      std::vector<std::string> vars_in_multi_block;
      std::set_intersection(block_var_names_set[idx].begin(),
                            block_var_names_set[idx].end(),
                            block_var_names_set[jdx].begin(),
                            block_var_names_set[jdx].end(),
                            std::back_inserter(vars_in_multi_block));

      for (const auto& name : vars_in_multi_block) {
        vars_in_multi_block_with_pair_.emplace(
            name, std::make_pair(VarType::FP32, idx));
453
      }
W
Wilber 已提交
454 455 456
    }
  }
}
W
Wilber 已提交
457

458 459
void ConvertToMixedPrecisionPass::ConvertAllFp64ToFp32(
    framework::ir::Graph* graph) {
460 461 462 463 464 465 466 467
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
468 469
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
470 471
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
472 473
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
474 475
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
476 477
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
478 479
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
480 481
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
482 483
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
484 485
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("in_dtype", static_cast<int>(VarType::FP32));
486
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
487 488
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("out_dtype", static_cast<int>(VarType::FP32));
489 490 491 492 493
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      auto* in_var = in_node->Var();
494 495
      if (!in_var->Persistable() && in_var->GetDataType() == VarType::FP64) {
        in_var->SetDataType(VarType::FP32);
496 497 498 499 500
      }
    }
  }
}

501 502
void ConvertToMixedPrecisionPass::Run() {
  LoadAndPrepare();
503

504 505
  for (size_t i = 0; i < graphes_.size(); ++i) {
    auto* graph = graphes_[i];
506 507
    VLOG(2) << " --------  handle subgraph " << i << ", has "
            << graph->Nodes().size() << " nodes --------";
508

509 510 511
    ConvertAllFp64ToFp32(graph);
    ConvertTensorDtype(i);
    FixCastAttr(graph);
512

513 514
    // A trick
    PatchForStrangeOp();
W
Wilber 已提交
515

516
    CHECK_EQ(framework::ir::VarDescIsConsistency(*graph), true);
W
Wilber 已提交
517 518
  }

519
  SaveMixedModel();
520 521
}

522 523 524
void ConvertToMixedPrecisionPass::ConvertTensorDtype(BlockID block_idx) {
  auto* graph = graphes_[block_idx];
  VarType::Type to_type;
525
  if (mixed_precision_ == phi::DataType::FLOAT16) {
526
    to_type = VarType::FP16;
527
  } else if (mixed_precision_ == phi::DataType::BFLOAT16) {
528
    to_type = VarType::BF16;
529 530
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
531
        "mixed_precision currently not supported dtype %d, we now only "
532
        "support fp16 and bf16.",
533
        static_cast<int>(mixed_precision_)));
534 535
  }

536 537
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  auto* block_desc = op_nodes[0]->Op()->Block();
538 539
  int num_low_precision = 0;
  std::vector<framework::ir::Node*> output_nodes;
540

541
  for (auto* op_node : op_nodes) {
542 543
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
W
Wilber 已提交
544 545
    VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
            << phi::TransToPhiKernelName(op_type);
546 547 548
    // 1. set input dtype.
    if (op_type == "feed") {
      auto feed_var = op_node->outputs[0]->Var();
549
      if (!keep_io_types_ && feed_var->GetDataType() == VarType::FP32) {
550 551 552 553 554 555
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
556 557
    } else if (op_type == "cast") {
      continue;
558 559
    }

W
Wilber 已提交
560 561 562 563 564
    else if (op_node->Op()->HasAttr("sub_block")) {  // NOLINT
      // sub_block op's output dtype should be same as input dtype, if have the
      // same name.
      std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
      for (auto* in : op_node->inputs) {
565 566 567
        if (!in->IsVar()) continue;
        auto* real_node = GetRealVarNode(block_idx, in);
        if (VarNodeHasDtype(real_node)) {
W
Wilber 已提交
568 569 570 571
          in_name_to_node[in->Name()] = in;
        }
      }

572 573 574 575
      for (auto* out : op_node->outputs) {
        if (!out->IsVar()) continue;
        auto* real_node = GetRealVarNode(block_idx, out);
        if (VarNodeHasDtype(real_node)) {
W
Wilber 已提交
576
          if (in_name_to_node.count(out->Name()))
577
            real_node->Var()->SetDataType(
W
Wilber 已提交
578 579 580 581 582 583 584
                in_name_to_node[out->Name()]->Var()->GetDataType());
        }
      }

      continue;
    }

585 586 587 588
    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
589
    //
590
    // If a var(op's out var) appears multiple times in graph, we should not
591
    // convert to fp16.
592 593
    else if (black_list_.count(op_type) == 0 &&  // NOLINT
             !VarIsMultiPrecisionOpsOut(block_idx, op_node)) {
594
      bool support_precision =
595
          OpSupportPrecision(op_type, backend_, mixed_precision_, black_list_);
596

597
      // If the op has no input of float type, we will not choose the
598
      // low precision kernel.
W
Wilber 已提交
599
      {
600
        bool has_float_input{false};
601 602 603 604 605 606 607
        for (auto* in_node : op_node->inputs) {
          if (!in_node->IsVar()) continue;
          auto* real_node = GetRealVarNode(block_idx, in_node);
          if (real_node->Var()->GetDataType() == VarType::FP16 ||
              real_node->Var()->GetDataType() == VarType::FP32 ||
              real_node->Var()->GetDataType() == VarType::FP64 ||
              real_node->Var()->GetDataType() == VarType::BF16) {
608
            has_float_input = true;
609 610 611
            break;
          }
        }
612 613

        if (!has_float_input) {
W
Wilber 已提交
614
          support_precision = false;
615
          VLOG(2) << " op doesn't has float input and output, just skip.";
W
Wilber 已提交
616 617
        }
      }
618 619
      VLOG(2) << "op type: " << op_type
              << " support low precision: " << support_precision;
W
Wilber 已提交
620

621
      if (support_precision) {
622
        VLOG(2) << " process input nodes:";
623 624
        ++num_low_precision;
        auto inputs = op_node->inputs;
625 626 627 628

        // Just for paddle's terriable case: op's input and output has the same
        // name.
        std::unordered_map<std::string, std::string> names_map;
629 630
        for (auto* out_node : op_node->outputs) {
          for (auto* in_node : op_node->inputs) {
631 632 633 634 635 636
            if (out_node->Name() == in_node->Name()) {
              names_map[out_node->Name()] = in_node->Name();
            }
          }
        }

W
Wilber 已提交
637
        // Process inputs.
638
        for (auto* in_node : inputs) {
639 640 641 642 643
          ProcessInputNode(
              true, in_node, op_node, &suffix_, block_desc, to_type, block_idx);
          if (names_map.count(in_node->Name()) && cast_map_.count(in_node)) {
            names_map[in_node->Name()] = cast_map_[in_node]->Name();
          }
644
        }
645
        VLOG(2) << " process output nodes:";
W
Wilber 已提交
646
        // Process outputs.
647
        for (auto* out_node : op_node->outputs) {
648
          ProcessOutputNode(block_idx, out_node, to_type);
649 650 651 652
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
653 654 655
          ProcessInputNode(false,
                           in_node,
                           op_node,
656
                           &suffix_,
W
Wilber 已提交
657
                           block_desc,
658
                           VarType::FP32,
659
                           block_idx);
660 661 662 663 664 665 666
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
667
      VLOG(3) << "not to run fp16 op_type: " << op_type;
668
      for (auto* in_node : op_node->inputs) {
669 670 671 672 673 674
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
675
                    VarType::FP32,
676
                    &suffix_,
677
                    block_desc,
678 679
                    &cast_map_);
          VLOG(3) << "-- " << in_node->Name() << "(" << to_type << ") to "
680
                  << cast_map_[in_node]->Name() << "(" << VarType::FP32 << ")";
681 682 683 684 685
        }
      }
    }
  }

W
Wilber 已提交
686 687
  // 4. if output_op's dtype is not compatible to output dtype, then just
  // insert cast.
688
  for (auto* node : output_nodes) {
689
    framework::ir::Node* fetch_op{nullptr};
690 691 692 693 694 695
    for (auto* op_node : node->outputs) {
      if (op_node->IsOp() && op_node->Op()->Type() == "fetch") {
        fetch_op = op_node;
      }
    }
    CHECK_NOTNULL(fetch_op);
696
    auto* var = node->Var();
697
    if (keep_io_types_ && var->GetDataType() == to_type) {
698 699 700
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
701
                fetch_op,
702
                to_type,
703
                VarType::FP32,
704
                &suffix_,
705
                block_desc,
706
                &cast_map_);
707
    } else if (!keep_io_types_ && var->GetDataType() == VarType::FP32) {
708 709 710
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
711
                fetch_op,
712
                VarType::FP32,
713
                to_type,
714
                &suffix_,
715
                block_desc,
716
                &cast_map_);
717 718 719
    }
  }

720 721 722 723
  for (auto* node : graph->Nodes()) {
    if (!node->IsVar()) continue;
    auto* real_node = GetRealVarNode(block_idx, node);
    if (!VarNodeHasDtype(real_node)) continue;
724

725 726
    if (vars_in_multi_block_with_pair_.count(real_node->Name()) &&
        vars_in_multi_block_with_pair_.at(real_node->Name()).second ==
727 728 729
            block_idx &&
        vars_in_multi_block_with_pair_.at(real_node->Name()).first ==
            VarType::Type()) {
730
      vars_in_multi_block_with_pair_.at(real_node->Name()).first =
731
          real_node->Var()->GetDataType();
W
Wilber 已提交
732 733 734
    }
  }

735
  if (num_low_precision)
736 737
    LOG(INFO) << "---  detected " << num_low_precision
              << " low precision ops in " << block_idx << " subgraph";
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753
// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void ConvertToMixedPrecisionPass::FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;
    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
754 755 756
  }
}

757 758 759 760 761 762 763 764 765
void ConvertToMixedPrecisionPass::SaveMixedModel() {
  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*main_graph_, &mixed_program_desc);

  auto parameters = scope_.LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : main_graph_->Nodes()) {
766 767
    if (!node->IsVar()) continue;
    if (VarNodeHasDtype(node)) {
768
      if (node->Var()->Persistable() &&
769
          node->Var()->GetDataType() == VarType::FP32) {
770 771 772 773 774 775 776 777 778
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
      }
    }
  }

#define CONVERT_TENSOR_DTYPE(DTYPE, dtype)                                   \
  mixed_tensor.set_type(DTYPE);                                              \
  auto* mixed_data = mixed_tensor.mutable_data<dtype>(platform::CPUPlace()); \
779 780
  for (int64_t i = 0; i < origin_tensor->numel(); i++) {                     \
    mixed_data[i] = static_cast<dtype>(origin_data[i]);                      \
781
  }                                                                          \
782 783 784
  origin_tensor->clear();                                                    \
  paddle::framework::TensorCopySync(                                         \
      mixed_tensor, platform::CPUPlace(), origin_tensor)
785 786

  for (const auto& param_name : parameters) {
787
    if (weights_should_be_fp32.count(param_name)) continue;
788 789
    auto* var = scope_.FindLocalVar(param_name);
    if (var->IsType<phi::DenseTensor>()) {
790 791
      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();
      if (origin_tensor->dtype() != phi::DataType::FLOAT32) continue;
792
      phi::DenseTensor mixed_tensor;
793 794 795 796
      mixed_tensor.Resize(origin_tensor->dims());
      auto* origin_data =
          origin_tensor->mutable_data<float>(platform::CPUPlace());
      if (mixed_precision_ == phi::DataType::FLOAT16) {
797 798
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::FLOAT16,
                             phi::dtype::float16);
799
      } else if (mixed_precision_ == phi::DataType::BFLOAT16) {
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::BFLOAT16,
                             phi::dtype::bfloat16);
      }
    }
  }

#undef CONVERT_TENSOR_DTYPE

  auto SerializeParams = [&]() -> std::string {
    std::ostringstream os;
    phi::CPUContext ctx;
    for (const auto& param : parameters) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope_.FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
817
      auto* tensor = scope_.FindVar(param)->GetMutable<phi::DenseTensor>();
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
      framework::SerializeToStream(os, *tensor, ctx);
    }
    return os.str();
  };

  auto StrToBinary = [](const std::string& path, const std::string& str) {
    std::ofstream file(path.c_str(), std::ios::binary);
    file.write(str.c_str(), str.size());
    file.close();
  };

  StrToBinary(mixed_model_file_,
              mixed_program_desc.Proto()->SerializeAsString());
  StrToBinary(mixed_params_file_, SerializeParams());
}

void ConvertToMixedPrecisionPass::PatchForStrangeOp() {
  for (auto* graph : graphes_) {
    for (auto op_node : framework::ir::TopologySortOperations(*graph)) {
      if (op_node->Name() == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
}
}  // namespace

850 851 852 853
void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
854 855
    VarType::Type from_type,
    VarType::Type to_type,
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
895
  next_op->Op()->Rename(node->Name(), map->at(node)->Name());
896 897 898 899
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support_precision = false;
  if (blacklist.count(op_type) == 0) {
    if (backend == phi::Backend::GPU)
      support_precision = GpuKernelSupportPrecision(op_type, precision);
    else
      support_precision =
          PhiKernelSupportPrecision(phi_op_type, backend, precision);
  }
  return support_precision;
}

916 917 918 919 920 921 922 923 924
void ConvertToMixedPrecision(
    const std::string& model_file,
    const std::string& params_file,
    const std::string& mixed_model_file,
    const std::string& mixed_params_file,
    phi::DataType mixed_precision,
    phi::Backend backend,
    bool keep_io_types,
    const std::unordered_set<std::string>& black_list) {
925 926 927 928 929 930 931 932 933
  ConvertToMixedPrecisionPass pass(model_file,
                                   params_file,
                                   mixed_model_file,
                                   mixed_params_file,
                                   mixed_precision,
                                   backend,
                                   keep_io_types,
                                   black_list);
  pass.Run();
934 935 936 937 938
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle