convert_to_mixed_precision.cc 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

W
Wilber 已提交
17 18
#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
W
Wilber 已提交
21
#include <unordered_map>
22
#include <unordered_set>
23
#include <utility>
24 25 26

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
27
#include "paddle/fluid/framework/framework.pb.h"
28 29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
31
#include "paddle/fluid/framework/ir/node.h"
32 33
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
34
#include "paddle/fluid/framework/var_desc.h"
35 36
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_clean_pass.h"
37
#include "paddle/fluid/inference/io.h"
38
#include "paddle/phi/common/bfloat16.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/phi/common/float16.h"
41
#include "paddle/phi/common/layout.h"
42
#include "paddle/phi/common/place.h"
43 44 45 46 47 48 49
#include "paddle/phi/core/tensor_meta.h"

namespace paddle {
namespace inference {
namespace analysis {

namespace {
50 51
using VarType = framework::proto::VarType;

W
Wilber 已提交
52
bool PhiKernelSupportPrecision(
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
W
Wilber 已提交
69 70 71 72 73 74 75
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool res = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, data_type, layout);
  res |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, data_type, layout);

  if (!res) {
76
    auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
W
Wilber 已提交
77 78 79
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (auto& kern_pair : it->second) {
80
        if (platform::is_gpu_place(kern_pair.first.place_) &&
81
            kern_pair.first.data_type_ == VarType::FP16) {
W
Wilber 已提交
82
          res = true;
83
          break;
W
Wilber 已提交
84 85 86 87
        }
      }
    }
  }
88 89 90
  return res;
}

91
class ConvertToMixedPrecisionPass {
92 93
  using BlockID = size_t;

94 95 96 97 98 99 100 101 102
 public:
  explicit ConvertToMixedPrecisionPass(
      const std::string& model_file,
      const std::string& params_file,
      const std::string& mixed_model_file,
      const std::string& mixed_params_file,
      phi::DataType mixed_precision,
      phi::Backend backend,
      bool keep_io_types,
103
      const std::unordered_set<std::string>& black_list)
104 105 106 107 108 109 110 111 112
      : model_file_(model_file),
        params_file_(params_file),
        mixed_model_file_(mixed_model_file),
        mixed_params_file_(mixed_params_file),
        mixed_precision_(mixed_precision),
        backend_(backend),
        keep_io_types_(keep_io_types),
        black_list_(black_list),
        place_(paddle::CPUPlace()),
113 114
        executor_(place_) {}

115 116 117 118
  void Run();

 private:
  void LoadAndPrepare();
119
  inline bool VarNodeHasDtype(framework::ir::Node* node);
120 121 122
  void ConvertAllFp64ToFp32(framework::ir::Graph* graph);
  void FixCastAttr(framework::ir::Graph* graph);
  void SaveMixedModel();
123
  void ConvertTensorDtype(BlockID block_idx);
124
  void ProcessInputNode(bool support_precision,
125 126
                        framework::ir::Node* in_node,
                        framework::ir::Node* op_node,
127 128
                        int* suffix,
                        framework::BlockDesc* block_desc,
129 130
                        VarType::Type to_type,
                        BlockID block_idx);
131

132 133 134 135
  void ProcessOutputNode(BlockID block_idx,
                         framework::ir::Node* var_node,
                         VarType::Type to_type);
  inline bool IsFloatVarType(VarType::Type type);
136

137
  bool OutShouldNotConvert(framework::ir::Node* var_node);
138
  // Just process special cases for weights conversion.
139
  bool WeightsShouldNotConvert(framework::ir::Node* var_node);
140 141 142

  // To support multi block, we need to consider a lot of special cases.
  // Return Node* which first appers in block.
143 144
  framework::ir::Node* GetRealVarNode(BlockID block_idx,
                                      framework::ir::Node* node);
145
  void FindVarsInMultiBlock();
146
  inline bool VarIsMultiPrecisionOpsOut(BlockID block_idx,
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                                        framework::ir::Node* op_node);

 private:
  // A trick. Patch for strange op, which input name equal to output name, such
  // as `fused_multi_transformer`
  void PatchForStrangeOp();

 private:
  std::string model_file_;
  std::string params_file_;
  std::string mixed_model_file_;
  std::string mixed_params_file_;
  phi::DataType mixed_precision_;
  phi::Backend backend_;
  bool keep_io_types_;
  std::unordered_set<std::string> black_list_;
  paddle::CPUPlace place_;
  framework::Executor executor_;
  framework::Scope scope_;

  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map_;
168 169 170 171
  std::unordered_map<std::string, std::pair<VarType::Type, BlockID>>
      vars_in_multi_block_with_pair_;
  std::unordered_map<std::string, std::vector<std::string>>
      vars_in_multi_block_with_ops_;
172 173 174 175 176 177 178
  int suffix_{0};

  std::unique_ptr<framework::ProgramDesc> program_desc_{nullptr};
  std::unique_ptr<framework::ir::Graph> main_graph_{nullptr};
  std::vector<framework::ir::Graph*> graphes_;
};

179 180 181 182 183 184 185 186 187 188 189 190
framework::ir::Node* ConvertToMixedPrecisionPass::GetRealVarNode(
    BlockID block_idx, framework::ir::Node* var_node) {
  CHECK_EQ(var_node->IsVar(), true);

  if (vars_in_multi_block_with_pair_.count(var_node->Name())) {
    auto origin_blockId =
        vars_in_multi_block_with_pair_.at(var_node->Name()).second;
    if (block_idx != origin_blockId) {
      auto* graph = graphes_[origin_blockId];
      for (auto* node : graph->Nodes()) {
        if (node->Name() == var_node->Name()) {
          return node;
191 192 193 194 195
        }
      }
    }
  }

196
  return var_node;
197 198
}

199 200 201 202 203 204 205
inline bool ConvertToMixedPrecisionPass::VarNodeHasDtype(
    framework::ir::Node* var_node) {
  CHECK_EQ(var_node->IsVar(), true);
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
206 207 208 209 210 211
}

// op1(fp32) -> var1, op2(fp16) -> var1
// if and only if op1 and op2 both support fp16, we convert op1 and op2's
// precision.
inline bool ConvertToMixedPrecisionPass::VarIsMultiPrecisionOpsOut(
212
    BlockID block_idx, framework::ir::Node* op_node) {
213
  CHECK_EQ(op_node->IsOp(), true);
214 215 216 217 218 219 220 221 222

  for (auto* var_node : op_node->outputs) {
    if (!var_node->IsVar()) continue;
    auto* real_var_node = GetRealVarNode(block_idx, var_node);
    if (!real_var_node->Var()->Persistable() &&
        vars_in_multi_block_with_ops_.count(var_node->Name())) {
      for (const auto& op_type :
           vars_in_multi_block_with_ops_.at(var_node->Name())) {
        if (!OpSupportPrecision(
223
                op_type, backend_, mixed_precision_, black_list_)) {
224
          VLOG(2) << var_node->Name()
225
                  << " is multi precision op's out, so we skip convert to fp16";
226
          return true;
227 228 229 230
        }
      }
    }
  }
231
  return false;
232 233 234 235
}

void ConvertToMixedPrecisionPass::ProcessInputNode(
    bool support_precision,
236 237
    framework::ir::Node* in_node,
    framework::ir::Node* op_node,
238 239
    int* suffix,
    framework::BlockDesc* block_desc,
240 241 242 243 244 245
    VarType::Type to_type,
    BlockID block_idx) {
  if (!in_node->IsVar()) return;
  auto* real_node = GetRealVarNode(block_idx, in_node);
  if (!VarNodeHasDtype(real_node)) return;
  auto* graph = graphes_[block_idx];
246 247 248 249
  bool is_main_block = block_idx == 0;
  auto* in_var = real_node->Var();
  auto in_var_type = in_var->GetDataType();
  auto prev_type = in_var_type;
250
  bool is_in_multi_block = vars_in_multi_block_with_pair_.count(in_var->Name());
251 252

  if (!is_main_block && is_in_multi_block) {
253
    in_var_type = vars_in_multi_block_with_pair_.at(in_var->Name()).first;
254 255
  }
  if (support_precision) {
256
    if (in_var->Persistable() && in_var_type == VarType::FP32) {
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      if (WeightsShouldNotConvert(in_node)) return;
      in_var->SetDataType(to_type);
      in_var_type = to_type;
      VLOG(3) << "   in_node name " << in_var->Name() << " from " << prev_type
              << " to " << to_type;
    } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
               in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  } else {
    if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
        in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  }
}

void ConvertToMixedPrecisionPass::ProcessOutputNode(
293 294 295 296
    BlockID block_idx, framework::ir::Node* var_node, VarType::Type to_type) {
  if (!var_node->IsVar()) return;
  auto* real_node = GetRealVarNode(block_idx, var_node);
  if (!VarNodeHasDtype(real_node)) return;
297 298
  auto* out_var = real_node->Var();
  auto prev_type = out_var->GetDataType();
299
  if (out_var->GetDataType() == VarType::FP32) {
300 301 302 303 304 305 306
    if (OutShouldNotConvert(var_node)) return;
    out_var->SetDataType(to_type);
  }
  VLOG(3) << "   out_node name " << var_node->Name() << " from dtype "
          << prev_type << " to " << out_var->GetDataType();
}

307
// Just process special cases.
308 309
bool ConvertToMixedPrecisionPass::OutShouldNotConvert(
    framework::ir::Node* var_node) {
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}
335

336 337
bool ConvertToMixedPrecisionPass::WeightsShouldNotConvert(
    framework::ir::Node* var_node) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    } else if (op_desc->Type() == "fused_multi_transformer") {
      auto vecs = op_desc->Input("LnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("LnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
380 381 382 383 384
    }
  }

  return false;
}
385 386 387 388

inline bool ConvertToMixedPrecisionPass::IsFloatVarType(VarType::Type type) {
  return (type == VarType::FP16) || (type == VarType::FP32) ||
         (type == VarType::BF16);
W
Wilber 已提交
389
}
390

391 392 393 394 395
void ConvertToMixedPrecisionPass::LoadAndPrepare() {
  program_desc_ =
      inference::Load(&executor_, &scope_, model_file_, params_file_);
  main_graph_ = std::unique_ptr<framework::ir::Graph>(
      new framework::ir::Graph(*program_desc_));
396 397 398 399
  for (size_t i = 0; i < main_graph_->SubGraphsSize(); ++i) {
    auto* graph = main_graph_->GetSubGraph(i);
    graphes_.push_back(graph);
  }
400 401 402 403 404 405 406 407 408 409 410

  // Remove all control var
  IrInferCleanGraphPass pass;
  Argument arg;
  arg.SetMainGraphNotOwned(main_graph_.get());
  pass.Run(&arg);

  FindVarsInMultiBlock();
}

void ConvertToMixedPrecisionPass::FindVarsInMultiBlock() {
411 412 413 414 415 416 417 418 419 420
  std::unordered_set<std::string> all_var_names_set;
  std::vector<std::unordered_set<std::string>> block_var_names_set(
      program_desc_->Size());
  for (BlockID idx = 0; idx < program_desc_->Size(); ++idx) {
    for (auto* op : program_desc_->Block(idx).AllOps()) {
      const auto& in_names = op->InputArgumentNames();
      block_var_names_set[idx].insert(in_names.begin(), in_names.end());
      const auto& out_names = op->OutputArgumentNames();
      block_var_names_set[idx].insert(out_names.begin(), out_names.end());

421
      if (op->HasAttr("sub_block") == false) {
422 423 424
        for (const auto& name : out_names) {
          if (all_var_names_set.count(name)) {
            vars_in_multi_block_with_ops_[name].push_back(op->Type());
425 426 427
          }
        }
      }
428 429
      all_var_names_set.insert(block_var_names_set[idx].begin(),
                               block_var_names_set[idx].end());
W
Wilber 已提交
430
    }
431 432
  }

433 434 435 436 437 438 439 440 441 442 443 444 445
  CHECK_GT(program_desc_->Size(), 0U);
  for (BlockID idx = 0; idx < program_desc_->Size() - 1; ++idx) {
    for (BlockID jdx = idx + 1; jdx < program_desc_->Size(); ++jdx) {
      std::vector<std::string> vars_in_multi_block;
      std::set_intersection(block_var_names_set[idx].begin(),
                            block_var_names_set[idx].end(),
                            block_var_names_set[jdx].begin(),
                            block_var_names_set[jdx].end(),
                            std::back_inserter(vars_in_multi_block));

      for (const auto& name : vars_in_multi_block) {
        vars_in_multi_block_with_pair_.emplace(
            name, std::make_pair(VarType::FP32, idx));
446
      }
W
Wilber 已提交
447 448 449
    }
  }
}
W
Wilber 已提交
450

451 452
void ConvertToMixedPrecisionPass::ConvertAllFp64ToFp32(
    framework::ir::Graph* graph) {
453 454 455 456 457 458 459 460
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
461 462
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
463 464
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
465 466
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
467 468
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
469 470
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
471 472
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
473 474
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("dtype", static_cast<int>(VarType::FP32));
475 476
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
477 478
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("in_dtype", static_cast<int>(VarType::FP32));
479
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
480 481
          static_cast<int>(VarType::FP64))
        op_node->Op()->SetAttr("out_dtype", static_cast<int>(VarType::FP32));
482 483 484 485 486
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      auto* in_var = in_node->Var();
487 488
      if (!in_var->Persistable() && in_var->GetDataType() == VarType::FP64) {
        in_var->SetDataType(VarType::FP32);
489 490 491 492 493
      }
    }
  }
}

494 495
void ConvertToMixedPrecisionPass::Run() {
  LoadAndPrepare();
496

497 498
  for (size_t i = 0; i < graphes_.size(); ++i) {
    auto* graph = graphes_[i];
499 500
    VLOG(2) << " --------  handle subgraph " << i << ", has "
            << graph->Nodes().size() << " nodes --------";
501

502 503 504
    ConvertAllFp64ToFp32(graph);
    ConvertTensorDtype(i);
    FixCastAttr(graph);
505

506 507
    // A trick
    PatchForStrangeOp();
W
Wilber 已提交
508

509
    CHECK_EQ(framework::ir::VarDescIsConsistency(*graph), true);
W
Wilber 已提交
510 511
  }

512
  SaveMixedModel();
513 514
}

515 516 517
void ConvertToMixedPrecisionPass::ConvertTensorDtype(BlockID block_idx) {
  auto* graph = graphes_[block_idx];
  VarType::Type to_type;
518
  if (mixed_precision_ == phi::DataType::FLOAT16) {
519
    to_type = VarType::FP16;
520
  } else if (mixed_precision_ == phi::DataType::BFLOAT16) {
521
    to_type = VarType::BF16;
522 523
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
524
        "mixed_precision currently not supported dtype %d, we now only "
525
        "support fp16 and bf16.",
526
        static_cast<int>(mixed_precision_)));
527 528
  }

529 530
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  auto* block_desc = op_nodes[0]->Op()->Block();
531 532
  int num_low_precision = 0;
  std::vector<framework::ir::Node*> output_nodes;
533

534
  for (auto* op_node : op_nodes) {
535 536
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
W
Wilber 已提交
537 538
    VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
            << phi::TransToPhiKernelName(op_type);
539 540 541
    // 1. set input dtype.
    if (op_type == "feed") {
      auto feed_var = op_node->outputs[0]->Var();
542
      if (!keep_io_types_ && feed_var->GetDataType() == VarType::FP32) {
543 544 545 546 547 548
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
549 550
    } else if (op_type == "cast") {
      continue;
551 552
    }

W
Wilber 已提交
553 554 555 556 557
    else if (op_node->Op()->HasAttr("sub_block")) {  // NOLINT
      // sub_block op's output dtype should be same as input dtype, if have the
      // same name.
      std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
      for (auto* in : op_node->inputs) {
558 559 560
        if (!in->IsVar()) continue;
        auto* real_node = GetRealVarNode(block_idx, in);
        if (VarNodeHasDtype(real_node)) {
W
Wilber 已提交
561 562 563 564
          in_name_to_node[in->Name()] = in;
        }
      }

565 566 567 568
      for (auto* out : op_node->outputs) {
        if (!out->IsVar()) continue;
        auto* real_node = GetRealVarNode(block_idx, out);
        if (VarNodeHasDtype(real_node)) {
W
Wilber 已提交
569
          if (in_name_to_node.count(out->Name()))
570
            real_node->Var()->SetDataType(
W
Wilber 已提交
571 572 573 574 575 576 577
                in_name_to_node[out->Name()]->Var()->GetDataType());
        }
      }

      continue;
    }

578 579 580 581
    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
582
    //
583
    // If a var(op's out var) appears multiple times in graph, we should not
584
    // convert to fp16.
585 586
    else if (black_list_.count(op_type) == 0 &&  // NOLINT
             !VarIsMultiPrecisionOpsOut(block_idx, op_node)) {
587
      bool support_precision =
588
          OpSupportPrecision(op_type, backend_, mixed_precision_, black_list_);
589

590 591
      // If the op has no input and output of float type, we will not choose the
      // low precision kernel.
W
Wilber 已提交
592
      {
593 594 595 596 597 598 599 600 601
        bool has_float_input_and_output{false};
        for (auto* in_node : op_node->inputs) {
          if (!in_node->IsVar()) continue;
          auto* real_node = GetRealVarNode(block_idx, in_node);
          if (real_node->Var()->GetDataType() == VarType::FP16 ||
              real_node->Var()->GetDataType() == VarType::FP32 ||
              real_node->Var()->GetDataType() == VarType::FP64 ||
              real_node->Var()->GetDataType() == VarType::BF16) {
            has_float_input_and_output = true;
W
Wilber 已提交
602 603 604
            break;
          }
        }
605 606 607 608 609 610 611 612 613 614 615 616
        for (auto* out_node : op_node->outputs) {
          if (!out_node->IsVar()) continue;
          auto* real_node = GetRealVarNode(block_idx, out_node);
          if (real_node->Var()->GetDataType() == VarType::FP16 ||
              real_node->Var()->GetDataType() == VarType::FP32 ||
              real_node->Var()->GetDataType() == VarType::FP64 ||
              real_node->Var()->GetDataType() == VarType::BF16) {
            has_float_input_and_output = true;
            break;
          }
        }
        if (!has_float_input_and_output) {
W
Wilber 已提交
617
          support_precision = false;
618
          VLOG(2) << " op doesn't has float input and output, just skip.";
W
Wilber 已提交
619 620
        }
      }
621 622
      VLOG(2) << "op type: " << op_type
              << " support low precision: " << support_precision;
W
Wilber 已提交
623

624
      if (support_precision) {
625
        VLOG(2) << " process input nodes:";
626 627
        ++num_low_precision;
        auto inputs = op_node->inputs;
628 629 630 631

        // Just for paddle's terriable case: op's input and output has the same
        // name.
        std::unordered_map<std::string, std::string> names_map;
632 633
        for (auto* out_node : op_node->outputs) {
          for (auto* in_node : op_node->inputs) {
634 635 636 637 638 639
            if (out_node->Name() == in_node->Name()) {
              names_map[out_node->Name()] = in_node->Name();
            }
          }
        }

W
Wilber 已提交
640
        // Process inputs.
641
        for (auto* in_node : inputs) {
642 643 644 645 646
          ProcessInputNode(
              true, in_node, op_node, &suffix_, block_desc, to_type, block_idx);
          if (names_map.count(in_node->Name()) && cast_map_.count(in_node)) {
            names_map[in_node->Name()] = cast_map_[in_node]->Name();
          }
647
        }
648
        VLOG(2) << " process output nodes:";
W
Wilber 已提交
649
        // Process outputs.
650
        for (auto* out_node : op_node->outputs) {
651
          ProcessOutputNode(block_idx, out_node, to_type);
652 653 654 655
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
656 657 658
          ProcessInputNode(false,
                           in_node,
                           op_node,
659
                           &suffix_,
W
Wilber 已提交
660
                           block_desc,
661
                           VarType::FP32,
662
                           block_idx);
663 664 665 666 667 668 669
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
670
      VLOG(3) << "not to run fp16 op_type: " << op_type;
671
      for (auto* in_node : op_node->inputs) {
672 673 674 675 676 677
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
678
                    VarType::FP32,
679
                    &suffix_,
680
                    block_desc,
681 682
                    &cast_map_);
          VLOG(3) << "-- " << in_node->Name() << "(" << to_type << ") to "
683
                  << cast_map_[in_node]->Name() << "(" << VarType::FP32 << ")";
684 685 686 687 688
        }
      }
    }
  }

W
Wilber 已提交
689 690
  // 4. if output_op's dtype is not compatible to output dtype, then just
  // insert cast.
691
  for (auto* node : output_nodes) {
692
    framework::ir::Node* fetch_op{nullptr};
693 694 695 696 697 698
    for (auto* op_node : node->outputs) {
      if (op_node->IsOp() && op_node->Op()->Type() == "fetch") {
        fetch_op = op_node;
      }
    }
    CHECK_NOTNULL(fetch_op);
699
    auto* var = node->Var();
700
    if (keep_io_types_ && var->GetDataType() == to_type) {
701 702 703
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
704
                fetch_op,
705
                to_type,
706
                VarType::FP32,
707
                &suffix_,
708
                block_desc,
709
                &cast_map_);
710
    } else if (!keep_io_types_ && var->GetDataType() == VarType::FP32) {
711 712 713
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
714
                fetch_op,
715
                VarType::FP32,
716
                to_type,
717
                &suffix_,
718
                block_desc,
719
                &cast_map_);
720 721 722
    }
  }

723 724 725 726
  for (auto* node : graph->Nodes()) {
    if (!node->IsVar()) continue;
    auto* real_node = GetRealVarNode(block_idx, node);
    if (!VarNodeHasDtype(real_node)) continue;
727

728 729 730 731
    if (vars_in_multi_block_with_pair_.count(real_node->Name()) &&
        vars_in_multi_block_with_pair_.at(real_node->Name()).second ==
            block_idx) {
      vars_in_multi_block_with_pair_.at(real_node->Name()).first =
732
          real_node->Var()->GetDataType();
W
Wilber 已提交
733 734 735
    }
  }

736
  if (num_low_precision)
737 738
    LOG(INFO) << "---  detected " << num_low_precision
              << " low precision ops in " << block_idx << " subgraph";
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754
// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void ConvertToMixedPrecisionPass::FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;
    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
755 756 757
  }
}

758 759 760 761 762 763 764 765 766
void ConvertToMixedPrecisionPass::SaveMixedModel() {
  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*main_graph_, &mixed_program_desc);

  auto parameters = scope_.LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : main_graph_->Nodes()) {
767 768
    if (!node->IsVar()) continue;
    if (VarNodeHasDtype(node)) {
769
      if (node->Var()->Persistable() &&
770
          node->Var()->GetDataType() == VarType::FP32) {
771 772 773 774 775 776 777 778 779
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
      }
    }
  }

#define CONVERT_TENSOR_DTYPE(DTYPE, dtype)                                   \
  mixed_tensor.set_type(DTYPE);                                              \
  auto* mixed_data = mixed_tensor.mutable_data<dtype>(platform::CPUPlace()); \
780 781
  for (int64_t i = 0; i < origin_tensor->numel(); i++) {                     \
    mixed_data[i] = static_cast<dtype>(origin_data[i]);                      \
782
  }                                                                          \
783 784 785
  origin_tensor->clear();                                                    \
  paddle::framework::TensorCopySync(                                         \
      mixed_tensor, platform::CPUPlace(), origin_tensor)
786 787

  for (const auto& param_name : parameters) {
788
    if (weights_should_be_fp32.count(param_name)) continue;
789 790
    auto* var = scope_.FindLocalVar(param_name);
    if (var->IsType<phi::DenseTensor>()) {
791 792
      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();
      if (origin_tensor->dtype() != phi::DataType::FLOAT32) continue;
793
      phi::DenseTensor mixed_tensor;
794 795 796 797
      mixed_tensor.Resize(origin_tensor->dims());
      auto* origin_data =
          origin_tensor->mutable_data<float>(platform::CPUPlace());
      if (mixed_precision_ == phi::DataType::FLOAT16) {
798 799
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::FLOAT16,
                             phi::dtype::float16);
800
      } else if (mixed_precision_ == phi::DataType::BFLOAT16) {
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::BFLOAT16,
                             phi::dtype::bfloat16);
      }
    }
  }

#undef CONVERT_TENSOR_DTYPE

  auto SerializeParams = [&]() -> std::string {
    std::ostringstream os;
    phi::CPUContext ctx;
    for (const auto& param : parameters) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope_.FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
818
      auto* tensor = scope_.FindVar(param)->GetMutable<phi::DenseTensor>();
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
      framework::SerializeToStream(os, *tensor, ctx);
    }
    return os.str();
  };

  auto StrToBinary = [](const std::string& path, const std::string& str) {
    std::ofstream file(path.c_str(), std::ios::binary);
    file.write(str.c_str(), str.size());
    file.close();
  };

  StrToBinary(mixed_model_file_,
              mixed_program_desc.Proto()->SerializeAsString());
  StrToBinary(mixed_params_file_, SerializeParams());
}

void ConvertToMixedPrecisionPass::PatchForStrangeOp() {
  for (auto* graph : graphes_) {
    for (auto op_node : framework::ir::TopologySortOperations(*graph)) {
      if (op_node->Name() == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
}
}  // namespace

851 852 853 854
void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
855 856
    VarType::Type from_type,
    VarType::Type to_type,
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
896
  next_op->Op()->Rename(node->Name(), map->at(node)->Name());
897 898 899 900
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support_precision = false;
  if (blacklist.count(op_type) == 0) {
    if (backend == phi::Backend::GPU)
      support_precision = GpuKernelSupportPrecision(op_type, precision);
    else
      support_precision =
          PhiKernelSupportPrecision(phi_op_type, backend, precision);
  }
  return support_precision;
}

917 918 919 920 921 922 923 924 925
void ConvertToMixedPrecision(
    const std::string& model_file,
    const std::string& params_file,
    const std::string& mixed_model_file,
    const std::string& mixed_params_file,
    phi::DataType mixed_precision,
    phi::Backend backend,
    bool keep_io_types,
    const std::unordered_set<std::string>& black_list) {
926 927 928 929 930 931 932 933 934
  ConvertToMixedPrecisionPass pass(model_file,
                                   params_file,
                                   mixed_model_file,
                                   mixed_params_file,
                                   mixed_precision,
                                   backend,
                                   keep_io_types,
                                   black_list);
  pass.Run();
935 936 937 938 939
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle