convert_to_mixed_precision.cc 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

W
Wilber 已提交
17 18
#include <algorithm>
#include <iterator>
19
#include <string>
W
Wilber 已提交
20
#include <unordered_map>
21 22 23 24
#include <unordered_set>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/framework.pb.h"
26 27 28
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
29
#include "paddle/fluid/framework/ir/node.h"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/tensor_meta.h"

using namespace paddle::framework;  // NOLINT

namespace paddle {
namespace inference {
namespace analysis {

namespace {

W
Wilber 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
inline std::string SerializeParams(framework::Scope* scope,
                                   const std::vector<std::string>& params) {
  std::ostringstream os;
  phi::CPUContext ctx;
  for (const auto& param : params) {
    VLOG(3) << "Serialize param: " << param;
    PADDLE_ENFORCE_NOT_NULL(
        scope->FindVar(param),
        platform::errors::NotFound("Block should already have a '%s' variable",
                                   param));
    auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
    framework::SerializeToStream(os, *tensor, ctx);
  }
  return os.str();
}

inline void StrToBinary(const std::string& path, const std::string& str) {
  std::ofstream file(path.c_str(), std::ios::binary);
  file.write(str.c_str(), str.size());
  file.close();
}
inline bool NodeVarHasDtype(framework::ir::Node* node) {
  if (node->IsCtrlVar()) return false;

  if (node->IsVar() &&
      (node->Var()->GetType() ==
           paddle::framework::proto::VarType::SELECTED_ROWS ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR_ARRAY ||
       node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS ||
       node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB)) {
    return true;
  }

  return false;
}
void SaveMixedModel(framework::ir::Graph* graph,
                    framework::Scope* scope,
                    framework::ProgramDesc* mixed_program_desc,
                    const std::string& mixed_model_file,
                    const std::string& mixed_params_file,
                    phi::DataType mixed_precision) {
  paddle::CPUPlace place;
  auto parameters = scope->LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : graph->Nodes()) {
    if (!(node->IsVar() && !node->IsCtrlVar())) continue;
    if (NodeVarHasDtype(node)) {
      if (node->Var()->Persistable() &&
          node->Var()->GetDataType() ==
              paddle::framework::proto::VarType::FP32) {
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
      }
    }
  }

  for (const auto& param_name : parameters) {
    auto* var = scope->FindLocalVar(param_name);
    if (var->IsType<framework::LoDTensor>() ||
        var->IsType<framework::Tensor>()) {
      auto* t = var->GetMutable<framework::LoDTensor>();
      framework::Tensor mixed_tensor;
      mixed_tensor.Resize(t->dims());
      auto* data = t->mutable_data<float>(platform::CPUPlace());

      if (mixed_precision == phi::DataType::FLOAT16 &&
          !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<float16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<float16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      } else if (mixed_precision == phi::DataType::BFLOAT16 &&
                 !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<bfloat16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<bfloat16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      }
    }
  }

  StrToBinary(mixed_model_file,
              mixed_program_desc->Proto()->SerializeAsString());
  StrToBinary(mixed_params_file, SerializeParams(scope, parameters));
}

bool PhiKernelSupportPrecision(
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
W
Wilber 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool res = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, data_type, layout);
  res |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, data_type, layout);

  if (!res) {
    auto& all_kernels = OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (auto& kern_pair : it->second) {
        if (platform::is_gpu_place(kern_pair.first.place_)) {
          res = true;
        }
      }
    }
  }
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  return res;
}

// Just process special cases.
bool OutShouldNotConvert(ir::Node* var_node) {
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}
W
Wilber 已提交
208 209 210 211 212 213 214
void ProcessOutputNode(ir::Node* var_node,
                       framework::proto::VarType::Type to_type) {
  if (!NodeVarHasDtype(var_node)) return;
  auto* out_var = var_node->Var();
  if (out_var->GetDataType() == framework::proto::VarType::FP32) {
    if (OutShouldNotConvert(var_node)) return;
    out_var->SetDataType(to_type);
215
  }
W
Wilber 已提交
216 217
  VLOG(3) << " out_node name " << var_node->Name() << " data_type "
          << out_var->GetDataType();
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
// Just process special cases for weights conversion.
bool WeightsShouldNotConvert(ir::Node* var_node) {
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
    }
  }

  return false;
}
W
Wilber 已提交
249 250 251
inline bool IsFloatVarType(framework::proto::VarType::Type type) {
  if (type == framework::proto::VarType::FP16 ||
      type == framework::proto::VarType::FP32 ||
252
      type == framework::proto::VarType::BF16)
W
Wilber 已提交
253 254 255
    return true;
  return false;
}
W
Wilber 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void ProcessInputNode(
    bool support_precision,
    framework::ir::Graph* graph,
    ir::Node* in_node,
    ir::Node* op_node,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* cast_map,
    framework::proto::VarType::Type to_type,
    bool is_main_block,
    std::unordered_map<std::string, framework::proto::VarType::Type>*
        vars_in_multi_block_map) {
  if (!NodeVarHasDtype(in_node)) return;
  auto* in_var = in_node->Var();
  auto in_var_type = in_var->GetDataType();
  if (!is_main_block && vars_in_multi_block_map->count(in_var->Name())) {
    in_var_type = vars_in_multi_block_map->at(in_var->Name());
  }
  if (support_precision) {
    if (in_var->Persistable() &&
        in_var_type == framework::proto::VarType::FP32) {
      if (WeightsShouldNotConvert(in_node)) return;
      in_var->SetDataType(to_type);
    } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
               in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                cast_map);
    }
  } else {
    if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
        in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                cast_map);
    }
  }
  VLOG(3) << " in_node name " << in_var->Name() << " data_type "
          << in_var->GetDataType();
}
W
Wilber 已提交
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
void ConvertAllFp64ToFp32(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "in_dtype", static_cast<int>(framework::proto::VarType::FP32));
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "out_dtype", static_cast<int>(framework::proto::VarType::FP32));
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      if (in_node->IsCtrlVar()) continue;
      auto* in_var = in_node->Var();
      if (!in_var->Persistable() &&
          in_var->GetDataType() == framework::proto::VarType::FP64) {
        in_var->SetDataType(framework::proto::VarType::FP32);
      }
    }
  }
}

// Handle special ops which contains dtype attribute. e.g., fill_constant,
// assign_value.
void HandleSpecialOps(framework::OpDesc* op_desc) {
  if (op_desc->Type() == "fill_constant") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "assign_value") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "eye") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "fill_any_like") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
W
Wilber 已提交
380 381 382 383 384
  } else if (op_desc->Type() == "fill_constant_batch_size_like") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  }
}

// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;

    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
  }
}

W
Wilber 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
void FindVarsInMultiBlock(
    framework::ProgramDesc* program_desc,
    std::unordered_map<std::string, framework::proto::VarType::Type>*
        vars_in_multi_block_map) {
  std::set<std::string> vars_in_multi_block;
  std::set<std::string> main_block_var_names_set;
  for (auto op : program_desc->Block(0).AllOps()) {
    auto in_names = op->InputArgumentNames();
    main_block_var_names_set.insert(in_names.begin(), in_names.end());
  }

  for (size_t i = 1; i < program_desc->Size(); ++i) {
    std::set<std::string> block_var_names_set;
    for (auto op : program_desc->Block(i).AllOps()) {
      auto in_names = op->InputArgumentNames();
      block_var_names_set.insert(in_names.begin(), in_names.end());
422
    }
W
Wilber 已提交
423 424 425 426 427 428 429 430 431 432 433

    std::set_intersection(
        main_block_var_names_set.begin(),
        main_block_var_names_set.end(),
        block_var_names_set.begin(),
        block_var_names_set.end(),
        std::inserter(vars_in_multi_block, vars_in_multi_block.begin()));
  }

  for (auto name : vars_in_multi_block) {
    vars_in_multi_block_map->emplace(name, framework::proto::VarType::FP32);
434 435 436
  }
}

W
Wilber 已提交
437 438 439 440 441 442 443 444 445 446
void ConvertTensorDtype(
    framework::ProgramDesc* program_desc,
    framework::ir::Graph* graph,
    const std::unordered_set<std::string>& blacklist,
    bool keep_io_types,
    phi::Backend backend,
    phi::DataType tensor_dtype,
    bool is_main_block,
    std::unordered_map<std::string, framework::proto::VarType::Type>*
        vars_in_multi_block_map) {
447 448 449 450 451 452 453
  framework::proto::VarType::Type to_type;
  if (tensor_dtype == phi::DataType::FLOAT16) {
    to_type = framework::proto::VarType::FP16;
  } else if (tensor_dtype == phi::DataType::BFLOAT16) {
    to_type = framework::proto::VarType::BF16;
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
454 455
        "mixed_precision currently not supported dtype %d, we now only "
        "support "
456 457 458 459
        "fp16 and bf16.",
        static_cast<int>(tensor_dtype)));
  }

W
Wilber 已提交
460 461 462
  auto* block_desc =
      framework::ir::TopologySortOperations(*graph)[0]->Op()->Block();

463 464 465 466
  int num_low_precision = 0;
  int suffix = 0;
  std::vector<framework::ir::Node*> output_nodes;
  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map;
467 468
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
469 470
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
W
Wilber 已提交
471 472
    VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
            << phi::TransToPhiKernelName(op_type);
473 474 475 476 477 478 479 480 481 482 483
    // 1. set input dtype.
    if (op_type == "feed") {
      auto feed_var = op_node->outputs[0]->Var();
      if (!keep_io_types &&
          feed_var->GetDataType() == framework::proto::VarType::FP32) {
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
484 485
    } else if (op_type == "cast") {
      continue;
486 487
    }

W
Wilber 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    else if (op_node->Op()->HasAttr("sub_block")) {  // NOLINT
      // sub_block op's output dtype should be same as input dtype, if have the
      // same name.
      std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
      for (auto* in : op_node->inputs) {
        if (NodeVarHasDtype(in)) {
          in_name_to_node[in->Name()] = in;
        }
      }

      for (auto out : op_node->outputs) {
        if (NodeVarHasDtype(out)) {
          if (in_name_to_node.count(out->Name()))
            out->Var()->SetDataType(
                in_name_to_node[out->Name()]->Var()->GetDataType());
        }
      }

      continue;
    }

509 510 511 512
    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
W
Wilber 已提交
513
    else if (blacklist.count(op_type) == 0) {  // NOLINT
514
      bool support_precision =
W
Wilber 已提交
515 516 517 518
          OpSupportPrecision(op_type, backend, tensor_dtype, blacklist);
      VLOG(2) << "op_type " << op_type << ", phi_op_type "
              << phi::TransToPhiKernelName(op_type) << " support low precision "
              << support_precision << ", "
519 520
              << reinterpret_cast<void*>(op_node->Op()->Block());

521
      if (support_precision) {
522
        HandleSpecialOps(op_node->Op());
523 524
        ++num_low_precision;
        auto inputs = op_node->inputs;
W
Wilber 已提交
525
        // Process inputs.
526
        for (auto* in_node : inputs) {
W
Wilber 已提交
527 528 529 530 531 532 533 534 535 536
          ProcessInputNode(true,
                           graph,
                           in_node,
                           op_node,
                           &suffix,
                           block_desc,
                           &cast_map,
                           to_type,
                           is_main_block,
                           vars_in_multi_block_map);
537
        }
W
Wilber 已提交
538
        // Process outputs.
539
        for (auto* out_node : op_node->outputs) {
W
Wilber 已提交
540
          ProcessOutputNode(out_node, to_type);
541 542 543 544
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
545 546 547 548 549 550 551 552 553 554
          ProcessInputNode(false,
                           graph,
                           in_node,
                           op_node,
                           &suffix,
                           block_desc,
                           &cast_map,
                           framework::proto::VarType::FP32,
                           is_main_block,
                           vars_in_multi_block_map);
555 556 557 558 559 560 561
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
562 563
      auto ins = op_node->inputs;
      for (auto* in_node : ins) {
W
Wilber 已提交
564
        if (in_node->IsCtrlVar()) continue;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
                    framework::proto::VarType::FP32,
                    &suffix,
                    block_desc,
                    &cast_map);
        }
      }
    }
  }

W
Wilber 已提交
580 581
  // 4. if output_op's dtype is not compatible to output dtype, then just
  // insert cast.
582
  for (auto* node : output_nodes) {
W
Wilber 已提交
583
    if (node->IsCtrlVar()) continue;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    auto var = node->Var();
    if (keep_io_types && var->GetDataType() == to_type) {
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
                node->outputs[0],
                to_type,
                framework::proto::VarType::FP32,
                &suffix,
                block_desc,
                &cast_map);
    } else if (!keep_io_types &&
               var->GetDataType() == framework::proto::VarType::FP32) {
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
                node->outputs[0],
                framework::proto::VarType::FP32,
                to_type,
                &suffix,
                block_desc,
                &cast_map);
    }
  }

W
Wilber 已提交
609 610 611 612 613 614 615 616
  if (is_main_block) {
    for (auto node : graph->Nodes()) {
      if (vars_in_multi_block_map->count(node->Name())) {
        vars_in_multi_block_map->at(node->Name()) = node->Var()->GetDataType();
      }
    }
  }

617 618 619 620 621
  if (num_low_precision)
    LOG(INFO) << "---  detected " << num_low_precision << " low precision ops";
}
}  // namespace

W
Wilber 已提交
622
bool OpSupportPrecision(const std::string& op_type,
623 624 625
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
W
Wilber 已提交
626
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
627
  bool support_precision = false;
W
Wilber 已提交
628
  if (blacklist.count(op_type) == 0) {
629
    if (backend == phi::Backend::GPU)
W
Wilber 已提交
630
      support_precision = GpuKernelSupportPrecision(op_type, precision);
631 632
    else
      support_precision =
W
Wilber 已提交
633
          PhiKernelSupportPrecision(phi_op_type, backend, precision);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  }
  return support_precision;
}

void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
    framework::proto::VarType::Type from_type,
    framework::proto::VarType::Type to_type,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
  next_op->Op()->RenameInput(node->Name(), map->at(node)->Name());
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

void ConvertToMixedPrecision(const std::string& model_file,
                             const std::string& params_file,
                             const std::string& mixed_model_file,
                             const std::string& mixed_params_file,
                             phi::DataType mixed_precision,
                             phi::Backend backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  paddle::CPUPlace place;
  framework::Executor executor(place);
  framework::Scope scope;
  auto program_desc =
      inference::Load(&executor, &scope, model_file, params_file);
W
Wilber 已提交
701
  auto main_graph = std::unique_ptr<framework::ir::Graph>(
702 703
      new framework::ir::Graph(*program_desc));

W
Wilber 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
  std::unordered_map<std::string, framework::proto::VarType::Type>
      vars_in_multi_block_map;
  FindVarsInMultiBlock(program_desc.get(), &vars_in_multi_block_map);

  for (size_t i = 0; i < main_graph->SubGraphsSize(); ++i) {
    auto graph = main_graph->GetSubGraph(i);
    VLOG(2) << " --------  handle subgraph " << i << ", has "
            << graph->Nodes().size() << " nodes";

    program_desc->Block(i).LocalVarNames();

    ConvertAllFp64ToFp32(graph);
    ConvertTensorDtype(program_desc.get(),
                       graph,
                       black_list,
                       keep_io_types,
                       backend,
                       mixed_precision,
                       i == 0,
                       &vars_in_multi_block_map);
    FixCastAttr(graph);
725 726
  }

W
Wilber 已提交
727 728 729 730 731 732 733 734 735
  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*main_graph, &mixed_program_desc);

  SaveMixedModel(main_graph.get(),
                 &scope,
                 &mixed_program_desc,
                 mixed_model_file,
                 mixed_params_file,
                 mixed_precision);
736 737 738 739 740
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle