convert_to_mixed_precision.cc 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

W
Wilber 已提交
17 18
#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
W
Wilber 已提交
21
#include <unordered_map>
22
#include <unordered_set>
23
#include <utility>
24 25 26

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
27
#include "paddle/fluid/framework/framework.pb.h"
28 29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
31
#include "paddle/fluid/framework/ir/node.h"
32 33
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
34
#include "paddle/fluid/framework/var_desc.h"
35 36
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_clean_pass.h"
37
#include "paddle/fluid/inference/io.h"
38
#include "paddle/phi/common/bfloat16.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/phi/common/float16.h"
41
#include "paddle/phi/common/layout.h"
42
#include "paddle/phi/common/place.h"
43 44 45 46 47 48 49 50 51
#include "paddle/phi/core/tensor_meta.h"

using namespace paddle::framework;  // NOLINT

namespace paddle {
namespace inference {
namespace analysis {

namespace {
W
Wilber 已提交
52
bool PhiKernelSupportPrecision(
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
W
Wilber 已提交
69 70 71 72 73 74 75 76 77 78 79
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool res = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, data_type, layout);
  res |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, data_type, layout);

  if (!res) {
    auto& all_kernels = OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (auto& kern_pair : it->second) {
80 81
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ == framework::proto::VarType::FP16) {
W
Wilber 已提交
82 83 84 85 86
          res = true;
        }
      }
    }
  }
87 88 89
  return res;
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
class ConvertToMixedPrecisionPass {
 public:
  explicit ConvertToMixedPrecisionPass(
      const std::string& model_file,
      const std::string& params_file,
      const std::string& mixed_model_file,
      const std::string& mixed_params_file,
      phi::DataType mixed_precision,
      phi::Backend backend,
      bool keep_io_types,
      std::unordered_set<std::string> black_list)
      : model_file_(model_file),
        params_file_(params_file),
        mixed_model_file_(mixed_model_file),
        mixed_params_file_(mixed_params_file),
        mixed_precision_(mixed_precision),
        backend_(backend),
        keep_io_types_(keep_io_types),
        black_list_(black_list),
        place_(paddle::CPUPlace()),
        executor_(place_) {
    black_list_.insert("assign");
    black_list_.insert("fill_constant");
    black_list_.insert("assign_value");
    black_list_.insert("eye");
    black_list_.insert("fill_any_like");
    black_list_.insert("fill_constant_batch_size_like");
  }
  void Run();

 private:
  void LoadAndPrepare();
  inline bool NodeVarHasDtype(framework::ir::Node* node);
  void ConvertAllFp64ToFp32(framework::ir::Graph* graph);
  void FixCastAttr(framework::ir::Graph* graph);
  void SaveMixedModel();
  void ConvertTensorDtype(int block_idx);
  void ProcessInputNode(bool support_precision,
                        ir::Node* in_node,
                        ir::Node* op_node,
                        int* suffix,
                        framework::BlockDesc* block_desc,
                        framework::proto::VarType::Type to_type,
                        int block_idx);

  void ProcessOutputNode(int block_idx,
                         ir::Node* var_node,
                         framework::proto::VarType::Type to_type);
  inline bool IsFloatVarType(framework::proto::VarType::Type type);

  bool OutShouldNotConvert(ir::Node* var_node);
  // Just process special cases for weights conversion.
  bool WeightsShouldNotConvert(ir::Node* var_node);

  // To support multi block, we need to consider a lot of special cases.
  // Return Node* which first appers in block.
  framework::ir::Node* GetRealNode(int block_idx, framework::ir::Node* node);
  void FindVarsInMultiBlock();
  inline bool VarIsMultiPrecisionOpsOut(int block_idx,
                                        framework::ir::Node* op_node);

 private:
  // A trick. Patch for strange op, which input name equal to output name, such
  // as `fused_multi_transformer`
  void PatchForStrangeOp();

 private:
  std::string model_file_;
  std::string params_file_;
  std::string mixed_model_file_;
  std::string mixed_params_file_;
  phi::DataType mixed_precision_;
  phi::Backend backend_;
  bool keep_io_types_;
  std::unordered_set<std::string> black_list_;
  paddle::CPUPlace place_;
  framework::Executor executor_;
  framework::Scope scope_;

  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map_;
  std::unordered_map<std::string,
                     std::pair<framework::proto::VarType::Type, int>>
      vars_in_multi_block_map_;
  std::vector<std::unordered_map<std::string, std::vector<std::string>>>
      vars_appear_multi_in_one_block_;
  int suffix_{0};

  std::unique_ptr<framework::ProgramDesc> program_desc_{nullptr};
  std::unique_ptr<framework::ir::Graph> main_graph_{nullptr};
  std::vector<framework::ir::Graph*> graphes_;
};

framework::ir::Node* ConvertToMixedPrecisionPass::GetRealNode(
    int block_idx, framework::ir::Node* node) {
  if (vars_in_multi_block_map_.count(node->Name())) {
    int var_origin_block_id = vars_in_multi_block_map_.at(node->Name()).second;
    if (block_idx != var_origin_block_id) {
      auto graph = graphes_[var_origin_block_id];
      for (auto nd : graph->Nodes()) {
        if (nd->Name() == node->Name()) {
          return nd;
        }
      }
    }
  }

  return node;
}

inline bool ConvertToMixedPrecisionPass::NodeVarHasDtype(
    framework::ir::Node* node) {
  if (node->IsVar() &&
      (node->Var()->GetType() ==
           paddle::framework::proto::VarType::SELECTED_ROWS ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR_ARRAY ||
       node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS ||
       node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB)) {
    return true;
  }

  return false;
}

// op1(fp32) -> var1, op2(fp16) -> var1
// if and only if op1 and op2 both support fp16, we convert op1 and op2's
// precision.
inline bool ConvertToMixedPrecisionPass::VarIsMultiPrecisionOpsOut(
    int block_idx, framework::ir::Node* op_node) {
  CHECK_EQ(op_node->IsOp(), true);
  bool ret{false};

  for (auto* out : op_node->outputs) {
    auto* real_node = GetRealNode(block_idx, out);
    if (!real_node->Var()->Persistable() &&
        vars_appear_multi_in_one_block_[block_idx].count(out->Name())) {
      for (auto op_type :
           vars_appear_multi_in_one_block_[block_idx].at(out->Name())) {
        if (OpSupportPrecision(
                op_type, backend_, mixed_precision_, black_list_)) {
          ret = true;
          VLOG(2) << out->Name()
                  << " is multi precision op's out, so we skip convert to fp16";
          break;
        }
      }
    }
    if (ret) break;
  }
  return ret;
}

void ConvertToMixedPrecisionPass::ProcessInputNode(
    bool support_precision,
    ir::Node* in_node,
    ir::Node* op_node,
    int* suffix,
    framework::BlockDesc* block_desc,
    framework::proto::VarType::Type to_type,
    int block_idx) {
  auto* real_node = GetRealNode(block_idx, in_node);
  if (!NodeVarHasDtype(real_node)) return;
  auto graph = graphes_[block_idx];
  bool is_main_block = block_idx == 0;
  auto* in_var = real_node->Var();
  auto in_var_type = in_var->GetDataType();
  auto prev_type = in_var_type;
  bool is_in_multi_block = vars_in_multi_block_map_.count(in_var->Name());

  if (!is_main_block && is_in_multi_block) {
    in_var_type = vars_in_multi_block_map_.at(in_var->Name()).first;
  }
  if (support_precision) {
    if (in_var->Persistable() &&
        in_var_type == framework::proto::VarType::FP32) {
      if (WeightsShouldNotConvert(in_node)) return;
      in_var->SetDataType(to_type);
      in_var_type = to_type;
      VLOG(3) << "   in_node name " << in_var->Name() << " from " << prev_type
              << " to " << to_type;
    } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
               in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  } else {
    if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
        in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                &cast_map_);
      VLOG(3) << "   in_node name " << in_var->Name() << "(" << prev_type
              << ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
    }
  }
}

void ConvertToMixedPrecisionPass::ProcessOutputNode(
    int block_idx,
    ir::Node* var_node,
    framework::proto::VarType::Type to_type) {
  auto* real_node = GetRealNode(block_idx, var_node);
  if (!NodeVarHasDtype(real_node)) return;
  auto* out_var = real_node->Var();
  auto prev_type = out_var->GetDataType();
  if (out_var->GetDataType() == framework::proto::VarType::FP32) {
    if (OutShouldNotConvert(var_node)) return;
    out_var->SetDataType(to_type);
  }
  VLOG(3) << "   out_node name " << var_node->Name() << " from dtype "
          << prev_type << " to " << out_var->GetDataType();
}

318
// Just process special cases.
319
bool ConvertToMixedPrecisionPass::OutShouldNotConvert(ir::Node* var_node) {
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}
345

346
bool ConvertToMixedPrecisionPass::WeightsShouldNotConvert(ir::Node* var_node) {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    } else if (op_desc->Type() == "fused_multi_transformer") {
      auto vecs = op_desc->Input("LnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("LnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
389 390 391 392 393
    }
  }

  return false;
}
394 395
inline bool ConvertToMixedPrecisionPass::IsFloatVarType(
    framework::proto::VarType::Type type) {
W
Wilber 已提交
396 397
  if (type == framework::proto::VarType::FP16 ||
      type == framework::proto::VarType::FP32 ||
398
      type == framework::proto::VarType::BF16)
W
Wilber 已提交
399 400 401
    return true;
  return false;
}
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
void ConvertToMixedPrecisionPass::LoadAndPrepare() {
  program_desc_ =
      inference::Load(&executor_, &scope_, model_file_, params_file_);
  main_graph_ = std::unique_ptr<framework::ir::Graph>(
      new framework::ir::Graph(*program_desc_));

  // Remove all control var
  IrInferCleanGraphPass pass;
  Argument arg;
  arg.SetMainGraphNotOwned(main_graph_.get());
  pass.Run(&arg);

  vars_appear_multi_in_one_block_.resize(program_desc_->Size());
  FindVarsInMultiBlock();
}

void ConvertToMixedPrecisionPass::FindVarsInMultiBlock() {
  std::vector<std::set<std::string>> block_var_names_set(program_desc_->Size());
  for (size_t i = 0; i < program_desc_->Size(); ++i) {
    for (auto op : program_desc_->Block(i).AllOps()) {
      auto in_names = op->InputArgumentNames();
      block_var_names_set[i].insert(in_names.begin(), in_names.end());
      auto out_names = op->OutputArgumentNames();
      if (op->HasAttr("sub_block") == false) {
        for (auto& n : out_names) {
          if (block_var_names_set[i].count(n)) {
            vars_appear_multi_in_one_block_[i][n].push_back(op->Type());
          }
        }
      }
      block_var_names_set[i].insert(out_names.begin(), out_names.end());
W
Wilber 已提交
434
    }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  }

  for (size_t i = 0; i < program_desc_->Size() - 1; ++i) {
    for (size_t j = i + 1; j < program_desc_->Size(); ++j) {
      std::set<std::string> vars_in_multi_block;
      std::set_intersection(
          block_var_names_set[i].begin(),
          block_var_names_set[i].end(),
          block_var_names_set[j].begin(),
          block_var_names_set[j].end(),
          std::inserter(vars_in_multi_block, vars_in_multi_block.begin()));

      for (auto name : vars_in_multi_block) {
        vars_in_multi_block_map_.emplace(
            name, std::make_pair(framework::proto::VarType::FP32, i));
      }
W
Wilber 已提交
451 452 453
    }
  }
}
W
Wilber 已提交
454

455 456
void ConvertToMixedPrecisionPass::ConvertAllFp64ToFp32(
    framework::ir::Graph* graph) {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "in_dtype", static_cast<int>(framework::proto::VarType::FP32));
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "out_dtype", static_cast<int>(framework::proto::VarType::FP32));
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      auto* in_var = in_node->Var();
      if (!in_var->Persistable() &&
          in_var->GetDataType() == framework::proto::VarType::FP64) {
        in_var->SetDataType(framework::proto::VarType::FP32);
      }
    }
  }
}

505 506
void ConvertToMixedPrecisionPass::Run() {
  LoadAndPrepare();
507

508 509 510 511 512
  for (size_t i = 0; i < main_graph_->SubGraphsSize(); ++i) {
    auto graph = main_graph_->GetSubGraph(i);
    graphes_.push_back(graph);
    VLOG(2) << " --------  handle subgraph " << i << ", has "
            << graph->Nodes().size() << " nodes --------";
513

514 515 516
    ConvertAllFp64ToFp32(graph);
    ConvertTensorDtype(i);
    FixCastAttr(graph);
517

518 519
    // A trick
    PatchForStrangeOp();
W
Wilber 已提交
520

521
    CHECK_EQ(ir::VarDescIsConsistency(*graph), true);
W
Wilber 已提交
522 523
  }

524
  SaveMixedModel();
525 526
}

527 528
void ConvertToMixedPrecisionPass::ConvertTensorDtype(int block_idx) {
  auto graph = graphes_[block_idx];
529
  framework::proto::VarType::Type to_type;
530
  if (mixed_precision_ == phi::DataType::FLOAT16) {
531
    to_type = framework::proto::VarType::FP16;
532
  } else if (mixed_precision_ == phi::DataType::BFLOAT16) {
533 534 535
    to_type = framework::proto::VarType::BF16;
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
536
        "mixed_precision currently not supported dtype %d, we now only "
537
        "support fp16 and bf16.",
538
        static_cast<int>(mixed_precision_)));
539 540
  }

541 542
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  auto* block_desc = op_nodes[0]->Op()->Block();
543 544
  int num_low_precision = 0;
  std::vector<framework::ir::Node*> output_nodes;
545

546
  for (auto* op_node : op_nodes) {
547 548
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
W
Wilber 已提交
549 550
    VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
            << phi::TransToPhiKernelName(op_type);
551 552 553
    // 1. set input dtype.
    if (op_type == "feed") {
      auto feed_var = op_node->outputs[0]->Var();
554
      if (!keep_io_types_ &&
555 556 557 558 559 560 561
          feed_var->GetDataType() == framework::proto::VarType::FP32) {
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
562 563
    } else if (op_type == "cast") {
      continue;
564 565
    }

W
Wilber 已提交
566 567 568 569 570
    else if (op_node->Op()->HasAttr("sub_block")) {  // NOLINT
      // sub_block op's output dtype should be same as input dtype, if have the
      // same name.
      std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
      for (auto* in : op_node->inputs) {
571
        auto* real_node = GetRealNode(block_idx, in);
572
        if (NodeVarHasDtype(real_node)) {
W
Wilber 已提交
573 574 575 576 577
          in_name_to_node[in->Name()] = in;
        }
      }

      for (auto out : op_node->outputs) {
578
        auto* real_node = GetRealNode(block_idx, out);
579
        if (NodeVarHasDtype(real_node)) {
W
Wilber 已提交
580
          if (in_name_to_node.count(out->Name()))
581
            real_node->Var()->SetDataType(
W
Wilber 已提交
582 583 584 585 586 587 588
                in_name_to_node[out->Name()]->Var()->GetDataType());
        }
      }

      continue;
    }

589 590 591 592
    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
593 594 595
    //
    // If a var(op's out var) appears multiple times in a block, we should not
    // convert to fp16.
596 597
    else if (black_list_.count(op_type) == 0 &&  // NOLINT
             !VarIsMultiPrecisionOpsOut(block_idx, op_node)) {
598
      bool support_precision =
599
          OpSupportPrecision(op_type, backend_, mixed_precision_, black_list_);
600

W
Wilber 已提交
601 602 603 604
      // if op not has float input, we will not choose the low precision kernel.
      {
        bool has_float_input{false};
        for (auto in_node : op_node->inputs) {
605
          auto* real_node = GetRealNode(block_idx, in_node);
W
Wilber 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618
          if (real_node->Var()->GetDataType() == proto::VarType::FP16 ||
              real_node->Var()->GetDataType() == proto::VarType::FP32 ||
              real_node->Var()->GetDataType() == proto::VarType::FP64 ||
              real_node->Var()->GetDataType() == proto::VarType::BF16) {
            has_float_input = true;
            break;
          }
        }
        if (!has_float_input) {
          support_precision = false;
          VLOG(2) << " op doesn't has float input, just skip.";
        }
      }
619
      VLOG(2) << " support low precision " << support_precision;
W
Wilber 已提交
620

621
      if (support_precision) {
622
        VLOG(2) << " process input nodes:";
623 624
        ++num_low_precision;
        auto inputs = op_node->inputs;
625 626 627 628 629 630 631 632 633 634 635 636

        // Just for paddle's terriable case: op's input and output has the same
        // name.
        std::unordered_map<std::string, std::string> names_map;
        for (auto out_node : op_node->outputs) {
          for (auto in_node : op_node->inputs) {
            if (out_node->Name() == in_node->Name()) {
              names_map[out_node->Name()] = in_node->Name();
            }
          }
        }

W
Wilber 已提交
637
        // Process inputs.
638
        for (auto* in_node : inputs) {
639 640 641 642 643
          ProcessInputNode(
              true, in_node, op_node, &suffix_, block_desc, to_type, block_idx);
          if (names_map.count(in_node->Name()) && cast_map_.count(in_node)) {
            names_map[in_node->Name()] = cast_map_[in_node]->Name();
          }
644
        }
645
        VLOG(2) << " process output nodes:";
W
Wilber 已提交
646
        // Process outputs.
647
        for (auto* out_node : op_node->outputs) {
648
          ProcessOutputNode(block_idx, out_node, to_type);
649 650 651 652
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
653 654 655
          ProcessInputNode(false,
                           in_node,
                           op_node,
656
                           &suffix_,
W
Wilber 已提交
657 658
                           block_desc,
                           framework::proto::VarType::FP32,
659
                           block_idx);
660 661 662 663 664 665 666
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
667
      VLOG(3) << "not to run fp16 op_type: " << op_type;
668 669
      auto ins = op_node->inputs;
      for (auto* in_node : ins) {
670 671 672 673 674 675 676
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
                    framework::proto::VarType::FP32,
677
                    &suffix_,
678
                    block_desc,
679 680 681 682
                    &cast_map_);
          VLOG(3) << "-- " << in_node->Name() << "(" << to_type << ") to "
                  << cast_map_[in_node]->Name() << "("
                  << framework::proto::VarType::FP32 << ")";
683 684 685 686 687
        }
      }
    }
  }

W
Wilber 已提交
688 689
  // 4. if output_op's dtype is not compatible to output dtype, then just
  // insert cast.
690
  for (auto* node : output_nodes) {
691 692 693 694 695 696 697
    ir::Node* fetch_op{nullptr};
    for (auto* op_node : node->outputs) {
      if (op_node->IsOp() && op_node->Op()->Type() == "fetch") {
        fetch_op = op_node;
      }
    }
    CHECK_NOTNULL(fetch_op);
698
    auto var = node->Var();
699
    if (keep_io_types_ && var->GetDataType() == to_type) {
700 701 702
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
703
                fetch_op,
704 705
                to_type,
                framework::proto::VarType::FP32,
706
                &suffix_,
707
                block_desc,
708 709
                &cast_map_);
    } else if (!keep_io_types_ &&
710 711 712 713
               var->GetDataType() == framework::proto::VarType::FP32) {
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
714
                fetch_op,
715 716
                framework::proto::VarType::FP32,
                to_type,
717
                &suffix_,
718
                block_desc,
719
                &cast_map_);
720 721 722
    }
  }

723
  for (auto node : graph->Nodes()) {
724
    auto* real_node = GetRealNode(block_idx, node);
725 726
    if (!NodeVarHasDtype(real_node)) continue;

727 728 729
    if (vars_in_multi_block_map_.count(real_node->Name()) &&
        vars_in_multi_block_map_.at(real_node->Name()).second == block_idx) {
      vars_in_multi_block_map_.at(real_node->Name()).first =
730
          real_node->Var()->GetDataType();
W
Wilber 已提交
731 732 733
    }
  }

734
  if (num_low_precision)
735 736
    LOG(INFO) << "---  detected " << num_low_precision
              << " low precision ops in " << block_idx << " subgraph";
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752
// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void ConvertToMixedPrecisionPass::FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;
    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
753 754 755
  }
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
void ConvertToMixedPrecisionPass::SaveMixedModel() {
  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*main_graph_, &mixed_program_desc);

  paddle::CPUPlace place;
  auto parameters = scope_.LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : main_graph_->Nodes()) {
    if (!(node->IsVar())) continue;
    if (NodeVarHasDtype(node)) {
      if (node->Var()->Persistable() &&
          node->Var()->GetDataType() ==
              paddle::framework::proto::VarType::FP32) {
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
      }
    }
  }

#define CONVERT_TENSOR_DTYPE(DTYPE, dtype)                                   \
  mixed_tensor.set_type(DTYPE);                                              \
  auto* mixed_data = mixed_tensor.mutable_data<dtype>(platform::CPUPlace()); \
  for (int i = 0; i < t->numel(); i++) {                                     \
    mixed_data[i] = static_cast<dtype>(data[i]);                             \
  }                                                                          \
  t->clear();                                                                \
  paddle::framework::TensorCopySync(mixed_tensor, place, t)

  for (const auto& param_name : parameters) {
    auto* var = scope_.FindLocalVar(param_name);
    if (var->IsType<phi::DenseTensor>()) {
      auto* t = var->GetMutable<phi::DenseTensor>();
      if (t->dtype() != phi::DataType::FLOAT32) continue;
      phi::DenseTensor mixed_tensor;
      mixed_tensor.Resize(t->dims());
      auto* data = t->mutable_data<float>(platform::CPUPlace());
      if (mixed_precision_ == phi::DataType::FLOAT16 &&
          !weights_should_be_fp32.count(param_name)) {
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::FLOAT16,
                             phi::dtype::float16);
      } else if (mixed_precision_ == phi::DataType::BFLOAT16 &&
                 !weights_should_be_fp32.count(param_name)) {
        CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::BFLOAT16,
                             phi::dtype::bfloat16);
      }
    }
  }

#undef CONVERT_TENSOR_DTYPE

  auto SerializeParams = [&]() -> std::string {
    std::ostringstream os;
    phi::CPUContext ctx;
    for (const auto& param : parameters) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope_.FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
      auto* tensor = scope_.FindVar(param)->GetMutable<framework::LoDTensor>();
      framework::SerializeToStream(os, *tensor, ctx);
    }
    return os.str();
  };

  auto StrToBinary = [](const std::string& path, const std::string& str) {
    std::ofstream file(path.c_str(), std::ios::binary);
    file.write(str.c_str(), str.size());
    file.close();
  };

  StrToBinary(mixed_model_file_,
              mixed_program_desc.Proto()->SerializeAsString());
  StrToBinary(mixed_params_file_, SerializeParams());
}

void ConvertToMixedPrecisionPass::PatchForStrangeOp() {
  for (auto* graph : graphes_) {
    for (auto op_node : framework::ir::TopologySortOperations(*graph)) {
      if (op_node->Name() == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
}
}  // namespace

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
    framework::proto::VarType::Type from_type,
    framework::proto::VarType::Type to_type,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
895
  next_op->Op()->Rename(node->Name(), map->at(node)->Name());
896 897 898 899
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support_precision = false;
  if (blacklist.count(op_type) == 0) {
    if (backend == phi::Backend::GPU)
      support_precision = GpuKernelSupportPrecision(op_type, precision);
    else
      support_precision =
          PhiKernelSupportPrecision(phi_op_type, backend, precision);
  }
  return support_precision;
}

916 917 918 919 920 921 922 923
void ConvertToMixedPrecision(const std::string& model_file,
                             const std::string& params_file,
                             const std::string& mixed_model_file,
                             const std::string& mixed_params_file,
                             phi::DataType mixed_precision,
                             phi::Backend backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
924 925 926 927 928 929 930 931 932
  ConvertToMixedPrecisionPass pass(model_file,
                                   params_file,
                                   mixed_model_file,
                                   mixed_params_file,
                                   mixed_precision,
                                   backend,
                                   keep_io_types,
                                   black_list);
  pass.Run();
933 934 935 936 937
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle