operator.cc 19.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

19
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
20 21
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
22
#include "paddle/framework/shape_inference.h"
23
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
24

D
dzhwinter 已提交
25 26 27 28
DEFINE_bool(op_sync, false,
            "Default cuda is asynchronous device, set to True will"
            "force op run in synchronous mode.");

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace framework {

D
dzhwinter 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

void UseCPU() {
  kKernelPriority.clear();
  /*Plain CPU*/
  auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
}

void UseMKLDNN() {
  UseCPU();
#if PADDLE_WITH_MKLML
  {
    /*MKLDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseCUDA() {
  UseMKLDNN();
#if PADDLE_WITH_CUDA
  /*Plain GPU*/
  auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}

void UseCUDNN() {
  UseCUDA();
#if PADDLE_WITH_CUDA
  if (platform::dynload::HasCUDNN()) {
    /*CUDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseALL() {
  UseCPU();
  UseMKLDNN();
  UseCUDA();
  UseCUDNN();
}

79 80
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
81 82
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
83 84 85
  }

  if (var->IsType<LoDTensor>()) {
86 87 88 89 90 91 92 93
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().lod();
  } else {
    return default_lod;
  }
}

109
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
110
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
111
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
112 113
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
114
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
115 116
}

Y
Yu Yang 已提交
117 118
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
119
  auto it = inputs_.find(name);
120 121
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
122
  return it->second;
Y
Yan Chunwei 已提交
123 124
}

125
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
126
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
127
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
128 129
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
130
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
131 132
}

Y
Yu Yang 已提交
133 134
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
135
  auto it = outputs_.find(name);
136 137
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
138
  return it->second;
Y
Yan Chunwei 已提交
139 140
}

141
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
142
  std::stringstream ss;
Y
Yu Yang 已提交
143
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
144 145
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
146 147 148
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
149
      if (scope) {
Q
Qiao Longfei 已提交
150 151
        ss << "[" << GetDims(*scope, input.second[i]) << "]";
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
152
      }
Y
Yu Yang 已提交
153 154 155
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
156
    }
Y
Yu Yang 已提交
157
    ss << "]";
Y
Yu Yang 已提交
158 159
    ++it;
    if (it != inputs_.end()) {
160 161
      ss << ", ";
    }
Q
Qiao Longfei 已提交
162
  }
Y
Yu Yang 已提交
163
  ss << "}, outputs:{";
Y
Yu Yang 已提交
164 165
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
166 167 168
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
169
      if (scope) {
Q
Qiao Longfei 已提交
170 171
        ss << "[" << GetDims(*scope, output.second[i]) << "]";
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
172
      }
Y
Yu Yang 已提交
173 174 175
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
176
    }
Y
Yu Yang 已提交
177
    ss << "]";
Y
Yu Yang 已提交
178 179
    ++it;
    if (it != outputs_.end()) {
180 181
      ss << ", ";
    }
Q
Qiao Longfei 已提交
182
  }
Y
Yu Yang 已提交
183
  ss << "}.";
Q
Qiao Longfei 已提交
184 185 186
  return ss.str();
}

D
dongzhihong 已提交
187 188
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
189 190 191 192 193 194 195
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
196 197
}

Y
Yu Yang 已提交
198
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
199 200
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
201 202
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
203 204
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
205
}
206

Q
qijun 已提交
207 208
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
209
  for (auto& o : inputs_) {
Q
qijun 已提交
210 211 212 213 214 215
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
216 217 218 219 220 221 222 223 224 225
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
226
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
227 228

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
229
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
230 231 232 233 234 235 236 237 238
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
239 240
}

241 242 243
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
244
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
245 246 247

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
248
                   "Type %s's input %s is not set", Type(), in.name());
249 250 251 252
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
253
                   "Type %s's output %s is not set", Type(), out.name());
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

270 271 272 273
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

Q
QI JUN 已提交
274 275 276 277 278 279 280
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
281 282
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
283 284 285 286 287 288 289 290 291 292 293
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
294 295
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
296 297 298 299
  }
  return t;
}

300
template <>
301
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
302
  auto* var = InputVar(name);
303
  return var == nullptr ? nullptr : GetTensorFromVar(var);
304 305 306
}

template <>
307
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
308 309 310 311
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
312 313 314 315 316
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
317 318 319 320
  return res;
}

template <>
321
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
322
  auto var = OutputVar(name);
Q
QI JUN 已提交
323
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
324 325 326
}

template <>
327
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
328 329 330 331
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
332 333
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
334 335
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
336
                                         : GetMutableTensorFromVar(var);
337
                 });
338 339 340
  return res;
}

Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
433 434 435 436 437 438 439 440 441 442 443 444
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

    // TODO(dzhwinter) : reuse ShareLoD in most operators.
    // Need to call ShareLayout explicitly in sequence related ops.
    // Shall we have a better method to shared info between in/out Tensor?
    out_tensor->set_layout(in_tensor.layout());
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
464 465
  }

466 467 468
  bool IsRuntime() const override { return true; }

 protected:
469 470 471 472 473 474 475
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
476 477
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
478 479 480 481 482 483 484 485 486 487
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
488 489
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
490 491 492
    }
  }

493
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
494 495 496 497 498
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
499 500 501 502 503
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
504
                             const platform::Place& place) const {
505 506
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
507 508
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
509 510 511 512 513

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
514 515
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
516 517
  }

D
dzhwinter 已提交
518
  ExecutionContext ctx(*this, scope, *dev_ctx);
519 520
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);

Q
qiaolongfei 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534
  OpKernelMap& kernels = kernels_iter->second;

  for (auto& candidate : kKernelPriority) {
    auto candidate_key =
        OpKernelType(expected_kernel_key.data_type_, std::get<0>(candidate),
                     expected_kernel_key.data_layout_, std::get<1>(candidate));

    if ((candidate_key == expected_kernel_key) ||
        (kernels.count(candidate_key))) {
      expected_kernel_key = candidate_key;
      break;
    }
  }

Q
qiaolongfei 已提交
535 536
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
  Scope& new_scope = scope.NewScope();

  for (auto& var_name_item : this->Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      if (var && VarIsTensor(var)) {
        auto* tensor_in = GetTensorFromVar(var);
        if (tensor_in->IsInitialized()) {
          auto kernel_type_for_var = this->GetKernelTypeForVar(
              var_name_item.first, *tensor_in, expected_kernel_key);
          if (kernel_type_for_var != expected_kernel_key) {
            auto out_var_names = OutputVars(true);
            if (std::find(out_var_names.begin(), out_var_names.end(),
                          var_name) != out_var_names.end()) {
              PADDLE_THROW(
                  "var %s is both input and output, "
                  "does not support transform",
                  var_name);
            }
            VLOG(3) << "need to do transform for var " << var_name;
            auto* trans_var = new_scope.Var(var_name);
            auto* out = DataTransform(expected_kernel_key, kernel_type_for_var,
                                      *tensor_in);
            CopyVariableWithTensor(*var, *out, *trans_var);
          }
Q
QI JUN 已提交
562 563
        }
      }
564 565
    }
  }
Q
QI JUN 已提交
566

D
dzhwinter 已提交
567 568
  auto kernel_iter = kernels.find(expected_kernel_key);

D
dzhwinter 已提交
569 570 571 572 573 574 575 576
  auto* new_dev_ctx = pool.Get(expected_kernel_key.place_);
  kernel_iter->second->Compute(
      ExecutionContext(*this, new_scope, *new_dev_ctx));

  /*For profiling/benchmark only*/
  if (FLAGS_op_sync) {
    new_dev_ctx->Wait();
  }
Q
Qiao Longfei 已提交
577 578
}

579
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
605
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
606
}
607

608 609 610 611 612 613 614 615 616 617 618
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
  return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}

Q
Qiao Longfei 已提交
619
}  // namespace framework
L
liaogang 已提交
620
}  // namespace paddle