operator.cc 18.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

19
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
20 21
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
22
#include "paddle/framework/shape_inference.h"
23
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
24

D
dzhwinter 已提交
25 26 27 28
DEFINE_bool(op_sync, false,
            "Default cuda is asynchronous device, set to True will"
            "force op run in synchronous mode.");

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace framework {

D
dzhwinter 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

void UseCPU() {
  kKernelPriority.clear();
  /*Plain CPU*/
  auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
}

void UseMKLDNN() {
  UseCPU();
#if PADDLE_WITH_MKLML
  {
    /*MKLDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseCUDA() {
  UseMKLDNN();
#if PADDLE_WITH_CUDA
  /*Plain GPU*/
  auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}

void UseCUDNN() {
  UseCUDA();
#if PADDLE_WITH_CUDA
  if (platform::dynload::HasCUDNN()) {
    /*CUDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseALL() {
  UseCPU();
  UseMKLDNN();
  UseCUDA();
  UseCUDNN();
}

79 80
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
81 82 83
  if (var == nullptr) {
    return DDim({-1});
  } else if (var->IsType<LoDTensor>()) {
84 85 86 87 88 89 90 91
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

92
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
93
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
94
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
95 96
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
97
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
98 99
}

Y
Yu Yang 已提交
100 101
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
102
  auto it = inputs_.find(name);
103 104
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
105
  return it->second;
Y
Yan Chunwei 已提交
106 107
}

108
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
109
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
110
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
111 112
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
113
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
114 115
}

Y
Yu Yang 已提交
116 117
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
118
  auto it = outputs_.find(name);
119 120
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
121
  return it->second;
Y
Yan Chunwei 已提交
122 123
}

124
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
125
  std::stringstream ss;
Y
Yu Yang 已提交
126
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
127 128
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
129 130 131
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
132 133 134
      if (scope) {
        ss << "(" << GetDims(*scope, input.second[i]) << ")";
      }
Y
Yu Yang 已提交
135 136 137
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
138
    }
Y
Yu Yang 已提交
139
    ss << "]";
Y
Yu Yang 已提交
140 141
    ++it;
    if (it != inputs_.end()) {
142 143
      ss << ", ";
    }
Q
Qiao Longfei 已提交
144
  }
Y
Yu Yang 已提交
145
  ss << "}, outputs:{";
Y
Yu Yang 已提交
146 147
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
148 149 150
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
151 152 153
      if (scope) {
        ss << "(" << GetDims(*scope, output.second[i]) << ")";
      }
Y
Yu Yang 已提交
154 155 156
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
157
    }
Y
Yu Yang 已提交
158
    ss << "]";
Y
Yu Yang 已提交
159 160
    ++it;
    if (it != outputs_.end()) {
161 162
      ss << ", ";
    }
Q
Qiao Longfei 已提交
163
  }
Y
Yu Yang 已提交
164
  ss << "}.";
Q
Qiao Longfei 已提交
165 166 167
  return ss.str();
}

D
dongzhihong 已提交
168 169
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
170 171 172 173 174 175 176
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
177 178
}

Y
Yu Yang 已提交
179
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
180 181
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
182 183
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
184 185
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
186
}
187

Q
qijun 已提交
188 189
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
190
  for (auto& o : inputs_) {
Q
qijun 已提交
191 192 193 194 195 196
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
197 198 199 200 201 202 203 204 205 206
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
207
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
208 209

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
210
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
220 221
}

222 223 224
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
225
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
226 227 228

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
229
                   "Type %s's input %s is not set", Type(), in.name());
230 231 232 233
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
234
                   "Type %s's output %s is not set", Type(), out.name());
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

251 252 253 254
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

Q
QI JUN 已提交
255 256 257 258 259 260 261
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
262 263
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
264 265 266 267 268 269 270 271 272 273 274
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
275 276
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
277 278 279 280
  }
  return t;
}

281
template <>
282
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
283
  auto* var = InputVar(name);
284
  return var == nullptr ? nullptr : GetTensorFromVar(var);
285 286 287
}

template <>
288
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
289 290 291 292
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
293 294 295 296 297
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
298 299 300 301
  return res;
}

template <>
302
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
303
  auto var = OutputVar(name);
Q
QI JUN 已提交
304
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
305 306 307
}

template <>
308
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
309 310 311 312
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
313 314
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
315 316
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
317
                                         : GetMutableTensorFromVar(var);
318
                 });
319 320 321
  return res;
}

Y
Yu Yang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
414 415 416 417 418 419 420 421 422 423 424 425
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

    // TODO(dzhwinter) : reuse ShareLoD in most operators.
    // Need to call ShareLayout explicitly in sequence related ops.
    // Shall we have a better method to shared info between in/out Tensor?
    out_tensor->set_layout(in_tensor.layout());
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
445 446
  }

447 448 449
  bool IsRuntime() const override { return true; }

 protected:
450 451 452 453 454 455 456
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
457 458
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
459 460 461 462 463 464 465 466 467 468
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
469 470
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
471 472 473
    }
  }

474
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
475 476 477 478 479
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
480 481 482 483 484
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
485
                             const platform::Place& place) const {
486 487
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
488 489
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
490 491 492 493 494

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
495 496
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
497 498
  }

D
dzhwinter 已提交
499
  ExecutionContext ctx(*this, scope, *dev_ctx);
500 501
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);

Q
qiaolongfei 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515
  OpKernelMap& kernels = kernels_iter->second;

  for (auto& candidate : kKernelPriority) {
    auto candidate_key =
        OpKernelType(expected_kernel_key.data_type_, std::get<0>(candidate),
                     expected_kernel_key.data_layout_, std::get<1>(candidate));

    if ((candidate_key == expected_kernel_key) ||
        (kernels.count(candidate_key))) {
      expected_kernel_key = candidate_key;
      break;
    }
  }

Q
qiaolongfei 已提交
516 517
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  Scope& new_scope = scope.NewScope();

  for (auto& var_name_item : this->Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      if (var && VarIsTensor(var)) {
        auto* tensor_in = GetTensorFromVar(var);
        if (tensor_in->IsInitialized()) {
          auto kernel_type_for_var = this->GetKernelTypeForVar(
              var_name_item.first, *tensor_in, expected_kernel_key);
          if (kernel_type_for_var != expected_kernel_key) {
            auto out_var_names = OutputVars(true);
            if (std::find(out_var_names.begin(), out_var_names.end(),
                          var_name) != out_var_names.end()) {
              PADDLE_THROW(
                  "var %s is both input and output, "
                  "does not support transform",
                  var_name);
            }
            VLOG(3) << "need to do transform for var " << var_name;
            auto* trans_var = new_scope.Var(var_name);
            auto* out = DataTransform(expected_kernel_key, kernel_type_for_var,
                                      *tensor_in);
            CopyVariableWithTensor(*var, *out, *trans_var);
          }
Q
QI JUN 已提交
543 544
        }
      }
545 546
    }
  }
Q
QI JUN 已提交
547

D
dzhwinter 已提交
548 549
  auto kernel_iter = kernels.find(expected_kernel_key);

D
dzhwinter 已提交
550 551 552 553 554 555 556 557
  auto* new_dev_ctx = pool.Get(expected_kernel_key.place_);
  kernel_iter->second->Compute(
      ExecutionContext(*this, new_scope, *new_dev_ctx));

  /*For profiling/benchmark only*/
  if (FLAGS_op_sync) {
    new_dev_ctx->Wait();
  }
Q
Qiao Longfei 已提交
558 559
}

560
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
586
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
587
}
588

589 590 591 592 593 594 595 596 597 598 599
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
  return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}

Q
Qiao Longfei 已提交
600
}  // namespace framework
L
liaogang 已提交
601
}  // namespace paddle