operator.cc 19.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <glog/logging.h>
Q
Qiao Longfei 已提交
15

16
#include <algorithm>
T
tensor-tang 已提交
17
#include <atomic>
D
dzhwinter 已提交
18

19
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
20
#include "paddle/framework/executor.h"
21
#include "paddle/framework/lod_tensor_array.h"
D
dzhwinter 已提交
22
#include "paddle/framework/operator.h"
23
#include "paddle/framework/shape_inference.h"
24
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
25 26 27 28

namespace paddle {
namespace framework {

D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

void UseCPU() {
  kKernelPriority.clear();
  /*Plain CPU*/
  auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
}

void UseMKLDNN() {
  UseCPU();
#if PADDLE_WITH_MKLML
  {
    /*MKLDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseCUDA() {
  UseMKLDNN();
#if PADDLE_WITH_CUDA
  /*Plain GPU*/
  auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}

void UseCUDNN() {
  UseCUDA();
#if PADDLE_WITH_CUDA
  if (platform::dynload::HasCUDNN()) {
    /*CUDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseALL() {
  UseCPU();
  UseMKLDNN();
  UseCUDA();
  UseCUDNN();
}

76 77 78 79 80 81 82 83 84 85 86
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

87
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
88
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
89
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
90 91
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
92
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
93 94
}

Y
Yu Yang 已提交
95 96
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
97
  auto it = inputs_.find(name);
98 99
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
100
  return it->second;
Y
Yan Chunwei 已提交
101 102
}

103
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
104
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
105
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
106 107
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
108
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
109 110
}

Y
Yu Yang 已提交
111 112
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
113
  auto it = outputs_.find(name);
114 115
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
116
  return it->second;
Y
Yan Chunwei 已提交
117 118
}

119
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
120
  std::stringstream ss;
Y
Yu Yang 已提交
121
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
122 123
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
124 125 126
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
127 128 129
      if (scope) {
        ss << "(" << GetDims(*scope, input.second[i]) << ")";
      }
Y
Yu Yang 已提交
130 131 132
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
133
    }
Y
Yu Yang 已提交
134
    ss << "]";
Y
Yu Yang 已提交
135 136
    ++it;
    if (it != inputs_.end()) {
137 138
      ss << ", ";
    }
Q
Qiao Longfei 已提交
139
  }
Y
Yu Yang 已提交
140
  ss << "}, outputs:{";
Y
Yu Yang 已提交
141 142
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
143 144 145
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
146 147 148
      if (scope) {
        ss << "(" << GetDims(*scope, output.second[i]) << ")";
      }
Y
Yu Yang 已提交
149 150 151
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
152
    }
Y
Yu Yang 已提交
153
    ss << "]";
Y
Yu Yang 已提交
154 155
    ++it;
    if (it != outputs_.end()) {
156 157
      ss << ", ";
    }
Q
Qiao Longfei 已提交
158
  }
Y
Yu Yang 已提交
159
  ss << "}.";
Q
Qiao Longfei 已提交
160 161 162
  return ss.str();
}

D
dongzhihong 已提交
163 164
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
165 166 167 168 169 170 171
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
172 173
}

Y
Yu Yang 已提交
174
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
175 176
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
177 178
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
179 180
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
181
}
182

Q
qijun 已提交
183 184
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
185
  for (auto& o : inputs_) {
Q
qijun 已提交
186 187 188 189 190 191
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
192 193 194 195 196 197 198 199 200 201
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
202
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
203 204

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
205
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
206 207 208 209 210 211 212 213 214
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
215 216
}

217 218 219
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
220
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
221 222 223

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
224
                   "Type %s's input %s is not set", Type(), in.name());
225 226 227 228
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
229
                   "Type %s's output %s is not set", Type(), out.name());
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

Q
QI JUN 已提交
246 247 248 249 250 251 252
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
253 254
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
255 256 257 258 259 260 261 262 263 264 265
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
266 267
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
268 269 270 271
  }
  return t;
}

272
template <>
273
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
274
  auto* var = InputVar(name);
275
  return var == nullptr ? nullptr : GetTensorFromVar(var);
276 277 278
}

template <>
279
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
280 281 282 283
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
284 285 286 287 288
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
289 290 291 292
  return res;
}

template <>
293
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
294
  auto var = OutputVar(name);
Q
QI JUN 已提交
295
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
296 297 298
}

template <>
299
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
300 301 302 303
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
304 305
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
306 307
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
308
                                         : GetMutableTensorFromVar(var);
309
                 });
310 311 312
  return res;
}

Y
Yu Yang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
  }

419 420 421
  bool IsRuntime() const override { return true; }

 protected:
422 423 424 425 426 427 428
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
429 430
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
431 432 433 434 435 436 437 438 439 440
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
441 442
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
443 444 445
    }
  }

446
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
447 448 449 450 451
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
452 453 454 455
  const OperatorBase& op_;
  const Scope& scope_;
};

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
const platform::DeviceContext* GetDeviceContext(
    framework::KernelTypePair& kernel_pair) {
  auto& actual_kernel_key = kernel_pair.first;
  auto& expected_kernel_key = kernel_pair.second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  if (platform::is_gpu_place(actual_kernel_key.place_) &&
      platform::is_cpu_place(expected_kernel_key.place_)) {
    return pool.Get(actual_kernel_key.place_);
  } else if (platform::is_cpu_place(actual_kernel_key.place_) &&
             platform::is_gpu_place(expected_kernel_key.place_)) {
    return pool.Get(expected_kernel_key.place_);
  } else {
    PADDLE_THROW(
        "Currently, model parallelism is only supported between CPU and CUDA");
  }
}

D
dzhwinter 已提交
474 475 476 477 478 479
const platform::DeviceContext* GetDeviceContext(
    const framework::OpKernelType& kernel) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  return pool.Get(kernel.place_);
}

480
void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
481
                             const platform::Place& place) const {
482 483
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
484 485
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
486 487 488 489 490

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
491 492
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
493 494 495 496
  }

  // check if op[type] have kernel for kernel_key
  OpKernelMap& kernels = kernels_iter->second;
D
dzhwinter 已提交
497 498

  ExecutionContext ctx(*this, scope, *dev_ctx);
Q
Qiao Longfei 已提交
499
  auto actual_kernel_key = GetActualKernelType(ctx);
500

D
dzhwinter 已提交
501
  auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key);
502

503
  if (actual_kernel_key == expected_kernel_key) {
Q
QI JUN 已提交
504 505 506 507
    PADDLE_ENFORCE_EQ(actual_kernel_key.place_, expected_kernel_key.place_,
                      "Currently, model parallelism is only supported between "
                      "CPU and other devices. For example, multi-GPU model "
                      "parallelism will failed.");
508
  } else {
D
dzhwinter 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    // find the best key candidate
    const DataTransformFnMap& trans_map = DataTransformFnMap::Instance();
    for (auto& candidate : kKernelPriority) {
      auto candidate_key =
          OpKernelType(actual_kernel_key.data_type_, std::get<0>(candidate),
                       actual_kernel_key.data_layout_, std::get<1>(candidate));

      auto candidate_pair = std::make_pair(actual_kernel_key, candidate_key);
      if ((actual_kernel_key == candidate_key) ||
          (kernels.count(candidate_key) &&
           trans_map.GetNullable(candidate_pair))) {
        expected_kernel_key = candidate_key;
        break;
      }
    }

525
    auto kernel_pair = std::make_pair(actual_kernel_key, expected_kernel_key);
D
dzhwinter 已提交
526
    const DataTransformFn* trans_fun = trans_map.GetNullable(kernel_pair);
Q
QI JUN 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540
    if (trans_fun) {
      auto input_vars = this->InputVars();
      // TODO(qijun) filter the input vars that do not need to be transformed

      // filter vars that has been transformed
      std::vector<std::string> need_trans;
      for (auto var_name : input_vars) {
        auto var_name_trans =
            var_name + framework::KernelTypeToString(expected_kernel_key);
        if (!scope.FindVar(var_name_trans)) {
          const_cast<Scope&>(scope).Var(var_name_trans);
          need_trans.push_back(var_name);
        }
      }
541

Q
QI JUN 已提交
542
      if (!need_trans.empty()) {
543
        auto trans_dev_ctx = GetDeviceContext(kernel_pair);
Q
QI JUN 已提交
544 545 546 547 548

        // Wait for transform starting
        dev_ctx->Wait();

        for (auto var_name : need_trans) {
D
dzhwinter 已提交
549
          (*trans_fun)(trans_dev_ctx, kernel_pair, *(scope.FindVar(var_name)),
Q
QI JUN 已提交
550 551 552 553
                       scope.FindVar(var_name + framework::KernelTypeToString(
                                                    expected_kernel_key)));
        }
        // Wait for data transform finishing
554
        trans_dev_ctx->Wait();
Q
QI JUN 已提交
555
      }
556 557
    }
  }
Q
QI JUN 已提交
558

D
dzhwinter 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572
  VLOG(10) << "Actual kernel: " << actual_kernel_key
           << "Expected kernel: " << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);

  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("The operator %s does not support %s", type_,
                 expected_kernel_key);
  }

  auto* expected_dev_ctx = GetDeviceContext(expected_kernel_key);
  ExecutionContext expected_ctx(*this, scope, *expected_dev_ctx);

  kernel_iter->second->Compute(expected_ctx);
573
}
Q
Qiao Longfei 已提交
574 575

OpKernelType OperatorWithKernel::GetActualKernelType(
Y
Yu Yang 已提交
576
    const ExecutionContext& ctx) const {
Q
QI JUN 已提交
577
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
Y
Yu Yang 已提交
578
}
Q
Qiao Longfei 已提交
579 580 581 582 583 584

OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const OpKernelType& actual_kernel_type) const {
  return actual_kernel_type;
}

585
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
611
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
612
}
613

Q
Qiao Longfei 已提交
614
}  // namespace framework
L
liaogang 已提交
615
}  // namespace paddle