elementwise_mul_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
S
sneaxiy 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x * eigen_y;
  }
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
73 74
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
75
 public:
H
hong 已提交
76
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
77 78

 protected:
79
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
80
    op->SetType("elementwise_mul_grad");
H
hong 已提交
81 82 83 84 85 86
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
87 88 89
  }
};

H
hong 已提交
90 91
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
92
 public:
H
hong 已提交
93
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
94 95

 protected:
96
  void Apply(GradOpPtr<T> op) const override {
97
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
98 99 100 101 102
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
103

H
hong 已提交
104
    op->SetAttrMap(this->Attrs());
105

H
hong 已提交
106 107 108
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
109 110 111
  }
};

S
sneaxiy 已提交
112 113 114
}  // namespace operators
}  // namespace paddle

115
namespace ops = paddle::operators;
116
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseMulOp,
S
sneaxiy 已提交
117
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
118 119 120 121 122 123 124
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elementwise_mul_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);

125
REGISTER_OPERATOR(elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
126
                  ops::ElementwiseDoubleGradOpInplaceInferer);
S
sneaxiy 已提交
127

128 129
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
130 131 132 133
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>);
134 135
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
136 137 138 139
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
140 141 142 143 144 145 146 147 148 149
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);