elementwise_mul_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
S
sneaxiy 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x * eigen_y;
  }
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
73 74
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
75
 public:
H
hong 已提交
76
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
77 78

 protected:
H
hong 已提交
79 80
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
81
    op->SetType("elementwise_mul_grad");
H
hong 已提交
82 83 84 85 86 87
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
88 89 90 91
    return op;
  }
};

H
hong 已提交
92 93
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
94
 public:
H
hong 已提交
95
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
96 97

 protected:
H
hong 已提交
98 99
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
100
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
101 102 103 104 105
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
106

H
hong 已提交
107
    op->SetAttrMap(this->Attrs());
108

H
hong 已提交
109 110 111
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
112 113 114 115
    return op;
  }
};

S
sneaxiy 已提交
116 117 118
}  // namespace operators
}  // namespace paddle

119
namespace ops = paddle::operators;
120
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseMulOp,
S
sneaxiy 已提交
121
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
122 123 124 125 126 127 128
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elementwise_mul_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);

129
REGISTER_OPERATOR(elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
130
                  ops::ElementwiseDoubleGradOpInplace);
S
sneaxiy 已提交
131

132 133
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
134 135 136 137
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>);
138 139
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
140 141 142 143
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
144 145 146 147 148 149 150 151 152 153
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);