elementwise_mul_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
S
sneaxiy 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x * eigen_y;
  }
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

S
sneaxiy 已提交
73 74 75 76 77 78 79 80 81 82 83 84
class ElementwiseMulOpGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_mul_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Y", Input("Y"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetAttrMap(Attrs());
S
sneaxiy 已提交
85 86
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
S
sneaxiy 已提交
87 88 89 90
    return op;
  }
};

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
class ElementwiseMulDoubleGradDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_mul_grad_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Y", Input("Y"));
    op->SetInput("DOut", Input(framework::GradVarName("Out")));
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

    op->SetAttrMap(Attrs());

    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return op;
  }
};

S
sneaxiy 已提交
115 116 117
}  // namespace operators
}  // namespace paddle

118
namespace ops = paddle::operators;
S
sneaxiy 已提交
119 120 121
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseOp,
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
                  ops::ElementwiseMulOpGradDescMaker);
122 123
REGISTER_OPERATOR(elementwise_mul_grad, ops::ElementwiseOpGrad,
                  ops::ElementwiseMulDoubleGradDescMaker);
124 125
REGISTER_OPERATOR(elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
                  ops::ElementwiseMulDoubleGradOpInplace);
S
sneaxiy 已提交
126

127 128
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
129 130 131 132
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>);
133 134
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
135 136 137 138
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
139 140 141 142 143 144 145 146 147 148
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);