elementwise_mul_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
S
sneaxiy 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

S
sneaxiy 已提交
45 46 47 48 49 50 51 52 53 54 55 56
class ElementwiseMulOpGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_mul_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Y", Input("Y"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetAttrMap(Attrs());
S
sneaxiy 已提交
57 58
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
S
sneaxiy 已提交
59 60 61 62
    return op;
  }
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class ElementwiseMulDoubleGradDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_mul_grad_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Y", Input("Y"));
    op->SetInput("DOut", Input(framework::GradVarName("Out")));
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

    op->SetAttrMap(Attrs());

    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return op;
  }
};

S
sneaxiy 已提交
87 88 89
}  // namespace operators
}  // namespace paddle

90
namespace ops = paddle::operators;
S
sneaxiy 已提交
91 92 93
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseOp,
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
                  ops::ElementwiseMulOpGradDescMaker);
94 95
REGISTER_OPERATOR(elementwise_mul_grad, ops::ElementwiseOpGrad,
                  ops::ElementwiseMulDoubleGradDescMaker);
96 97
REGISTER_OPERATOR(elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
                  ops::ElementwiseMulDoubleGradOpInplace);
S
sneaxiy 已提交
98

99 100
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
101 102 103 104
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>);
105 106
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
107 108 109 110
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
111 112 113 114 115 116 117 118 119 120
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);