loss.py 130.3 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
W
wanghuancoder 已提交
29
from paddle import _C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
J
Jiabin Yang 已提交
31
from paddle.framework import core
32
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
    assert len(input.shape) >= 2, \
        "The rank of input should be greater than or equal to 2."
83 84 85 86
    assert len(input.shape) == len(
        label.shape), ("The rank of input and label should be equal, "
                       "but received input: %d, label: %d." %
                       (len(input.shape), len(label.shape)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
                                  "but received %d." % label.shape[-1])
    assert input.shape[:-1] == label.shape[:-1], (
        "All dimensions should be equal except the last one.")
    assert input.numel() > 0 and label.numel() > 0, \
        "Any dimension of input and label cannot be equal to 0."

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
        label, axis=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
        return _C_ops.final_state_log_loss(input, label, epsilon)

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

150 151 152 153 154 155 156
    helper.append_op(type='log_loss',
                     inputs={
                         'Predicted': [input],
                         'Labels': [label]
                     },
                     outputs={'Loss': [loss]},
                     attrs={'epsilon': epsilon})
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    return loss


def fluid_softmax_with_cross_entropy(logits,
                                     label,
                                     soft_label=False,
                                     ignore_index=-100,
                                     numeric_stable_mode=True,
                                     return_softmax=False,
                                     axis=-1):
    r"""

    This operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::

        loss_j =  -\\text{logits}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::

        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::

        max_j &= \\max_{i=0}^{K}{\\text{logits}_i}

        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j)

        softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`, 
            Label is a ``Tensor``  in the same shape with :attr:`logits`. 
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor`` 
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
                                      if :attr:`soft_label` is set to :attr:`False`. 
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
                                              when :attr:`soft_label` is :attr:`False` 
                                              and GPU is used. When :attr:`soft_label` 
                                              is :attr:`True` or CPU is used, the 
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
        axis (int, optional): The index of dimension to perform softmax calculations. It 
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
            softmax, backprop, loss = _C_ops.softmax_with_cross_entropy(
                logits, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                'axis', axis)
        else:
            if in_dygraph_mode():
                softmax, loss = _C_ops.final_state_cross_entropy_with_softmax(
                    logits, label, soft_label, True, numeric_stable_mode,
                    ignore_index, axis)
            if _in_legacy_dygraph():
                softmax, loss = _C_ops.softmax_with_cross_entropy(
                    logits, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                    'axis', axis)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
        'axis': axis
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
296 297 298 299 300 301 302
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
    """ 
  
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
  
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
  
    Args:
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims], 
                        the data type is float32 or float64.
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims], 
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

  
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
  
    Examples:

      .. code-block:: python
  
          import paddle
          
          DATATYPE = "float32"
  
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
          
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
  
    """
    check_variable_and_dtype(anchor, 'anchor', ['float32', 'float64'],
                             'npair_loss')
    check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                             'positive')
    check_variable_and_dtype(labels, 'labels', ['float32', 'float64', 'int64'],
                             'labels')
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

360 361 362
    labels = paddle.equal(labels, paddle.transpose(labels,
                                                   perm=[1,
                                                         0])).astype('float32')
363 364 365 366 367 368
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) \
             + paddle.mean(paddle.sum(paddle.square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

369 370 371 372 373 374 375
    similarity_matrix = paddle.matmul(anchor,
                                      positive,
                                      transpose_x=False,
                                      transpose_y=True)
    softmax_ce = fluid_softmax_with_cross_entropy(logits=similarity_matrix,
                                                  label=labels,
                                                  soft_label=True)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
        The tensor storing the element-wise squared error \
                  difference between input and label.

    Return type: Tensor.

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
    if _non_static_mode():
        minus_out = _C_ops.elementwise_sub(input, label)
        square_out = _C_ops.square(minus_out)
        return square_out

    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'square_error_cost')
    check_variable_and_dtype(label, "label", ['float32', 'float64'],
                             'square_error_cost')
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
427 428 429 430 431 432
    helper.append_op(type='elementwise_sub',
                     inputs={
                         'X': [input],
                         'Y': [label]
                     },
                     outputs={'Out': [minus_out]})
433 434

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
435 436 437
    helper.append_op(type='square',
                     inputs={'X': [minus_out]},
                     outputs={'Out': [square_out]})
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    return square_out


def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
	Tuple:

        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

523 524 525 526
        helper.append_op(type="sequence_erase",
                         inputs={"X": [input]},
                         outputs={"Out": [erased_input]},
                         attrs={"tokens": ignored_tokens})
527 528
        input = erased_input

529 530 531 532
        helper.append_op(type="sequence_erase",
                         inputs={"X": [label]},
                         outputs={"Out": [erased_label]},
                         attrs={"tokens": ignored_tokens})
533 534 535 536 537 538 539 540 541 542
        label = erased_label

    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
543 544 545 546 547 548 549
    helper.append_op(type="edit_distance",
                     inputs=this_inputs,
                     outputs={
                         "Out": [edit_distance_out],
                         "SequenceNum": [sequence_num]
                     },
                     attrs={"normalized": normalized})
550 551 552 553

    return edit_distance_out, sequence_num


554 555 556 557
def binary_cross_entropy(input,
                         label,
                         weight=None,
                         reduction='mean',
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

617 618
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
619
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
620
            print(output)  # [0.65537095]
621 622 623 624 625 626 627 628

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
629 630
    if in_dygraph_mode():
        out = _C_ops.final_state_bce_loss(input, label)
631
        if weight is not None:
632
            out = _C_ops.final_state_multiply(out, weight, 'axis', -1)
633 634

        if reduction == 'sum':
W
wanghuancoder 已提交
635 636
            return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                     "reduce_all", True)
637
        elif reduction == 'mean':
638
            return _C_ops.final_state_mean_all(out)
639 640 641
        else:
            return out
    else:
J
Jiabin Yang 已提交
642 643 644 645 646 647 648 649 650 651 652 653
        if _in_legacy_dygraph():
            out = _C_ops.bce_loss(input, label)
            if weight is not None:
                out = _C_ops.elementwise_mul(out, weight, 'axis', -1)
            if reduction == 'sum':
                return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                         "reduce_all", True)
            elif reduction == 'mean':
                return _C_ops.mean(out)
            else:
                return out
        else:
654 655 656 657
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'binary_cross_entropy')
            check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                     'binary_cross_entropy')
J
Jiabin Yang 已提交
658 659 660 661

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
662 663 664 665 666 667
            helper.append_op(type='bce_loss',
                             inputs={
                                 'X': [input],
                                 'Label': [label],
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
683 684


685 686 687 688 689 690
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
691
    r"""
692 693 694 695 696 697 698 699 700 701 702 703 704
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
705
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
706

707
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
708 709

    .. math::
710
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
711

N
Noel 已提交
712
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
713 714 715
    we reformulate the loss as follows:

    .. math::
716
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
761

762 763
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
764
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
765
            print(output)  # [0.45618808]
766 767 768 769 770 771 772 773

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

H
hong 已提交
774 775
    if _non_static_mode():
        if in_dygraph_mode():
776 777
            one = _C_ops.final_state_full([1], float(1.0),
                                          core.VarDesc.VarType.FP32,
778
                                          _current_expected_place())
H
hong 已提交
779 780 781
            out = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
782
            one = _varbase_creator(dtype=logit.dtype)
783 784 785
            _C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu', False,
                                 'dtype', one.dtype, 'str_value', '1.0',
                                 'shape', [1])
H
hong 已提交
786
            out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
787
        if pos_weight is not None:
W
wanghuancoder 已提交
788 789 790 791 792
            log_weight = _C_ops.elementwise_add(
                _C_ops.elementwise_mul(label,
                                       _C_ops.elementwise_sub(pos_weight, one)),
                one)
            out = _C_ops.elementwise_mul(out, log_weight)
793
        if weight is not None:
W
wanghuancoder 已提交
794
            out = _C_ops.elementwise_mul(out, weight)
795 796

        if reduction == "sum":
W
wanghuancoder 已提交
797
            return _C_ops.reduce_sum(out, 'reduce_all', True)
798
        elif reduction == "mean":
W
wanghuancoder 已提交
799
            return _C_ops.mean(out)
800 801 802
        else:
            return out

803 804 805 806
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
807 808 809 810
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

811
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
812 813
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
814
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
815
    if pos_weight is not None:
816 817 818
        check_variable_and_dtype(pos_weight, 'pos_weight',
                                 ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
819
        log_weight = paddle.add(
820
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
821 822 823 824
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
825 826
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
827 828 829 830 831 832 833 834 835 836
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
904 905 906 907 908
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
909 910 911
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
912 913 914 915
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
916 917

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
918 919 920 921
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
922 923
    """

924
    if _non_static_mode():
925 926 927 928 929
        out, _, _ = _C_ops.hierarchical_sigmoid(input, weight, label,
                                                path_table, path_code, bias,
                                                'num_classes', num_classes,
                                                'is_sparse', is_sparse,
                                                'remote_prefetch', is_sparse)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

967 968 969 970
    helper.append_op(type="hierarchical_sigmoid",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
971 972 973
    return out


974
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
975
    r"""
976 977 978 979 980 981 982
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

983
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
984 985 986 987 988 989


    where z_i is given by:

    .. math::

990 991
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
992
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
993
        \end{array} \right.
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1007
        delta (float, optional): Specifies the hyperparameter delta to be used.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1029
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1030
            print(output)
1031
    """
1032 1033 1034 1035
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'smooth_l1_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'smooth_l1_loss')
1036

1037 1038 1039 1040 1041 1042 1043 1044
    if in_dygraph_mode():
        out, residual = _C_ops.final_state_huber_loss(input, label, delta)
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        helper.append_op(type='huber_loss',
                         inputs={
                             'X': input,
                             'Y': label
                         },
                         outputs={
                             'Out': out,
                             'Residual': residual
                         },
                         attrs={'delta': delta})
1055 1056 1057 1058 1059 1060 1061 1062

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1063
        return paddle.mean(out)
1064
    elif reduction == 'sum':
1065
        return paddle.sum(out)
1066 1067


1068 1069
def margin_ranking_loss(input,
                        other,
1070
                        label,
1071 1072 1073
                        margin=0.0,
                        reduction='mean',
                        name=None):
1074
    r"""
1075

1076
    This op the calcluate the margin rank loss between the input, other and label, use the math function as follows.
1077

1078
    .. math::
1079
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1096
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

1107 1108
            import paddle

Z
Zhong Hui 已提交
1109 1110 1111
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1112
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1113
            print(loss) # [0.75]
1114
    """
1115 1116 1117 1118
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    if in_dygraph_mode():
        out = _C_ops.final_state_subtract(other, input)
        out = _C_ops.final_state_multiply(out, label)
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
        if reduction == 'sum':
            return _C_ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return _C_ops.final_state_mean_all(out)
        return out
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1132 1133
        out = _C_ops.elementwise_sub(other, input)
        out = _C_ops.elementwise_mul(out, label)
1134 1135
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
W
wanghuancoder 已提交
1136 1137
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
1138
        if reduction == 'sum':
W
wanghuancoder 已提交
1139
            return _C_ops.reduce_sum(out, 'reduce_all', True)
1140
        elif reduction == 'mean':
W
wanghuancoder 已提交
1141
            return _C_ops.mean(out)
1142 1143 1144
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1145 1146 1147 1148 1149 1150
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(other, 'other', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'margin_rank_loss')
1151

1152
    out = paddle.subtract(other, input)
1153
    out = paddle.multiply(out, label)
1154 1155 1156

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1157
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1158 1159 1160 1161 1162
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1163 1164 1165
        helper.append_op(type="relu",
                         inputs={"X": out},
                         outputs={"Out": result_out})
1166 1167 1168 1169
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1170 1171 1172 1173
        helper.append_op(type="reduce_sum",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs=attrs)
1174 1175 1176
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1177 1178 1179 1180
        helper.append_op(type="mean",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs={})
1181 1182 1183
        return result_out


1184
def l1_loss(input, label, reduction='mean', name=None):
1185
    r"""
1186
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1187

1188
    If `reduction` set to ``'none'``, the loss is:
1189 1190

    .. math::
1191
        Out = \lvert input - label \rvert
1192

1193
    If `reduction` set to ``'mean'``, the loss is:
1194 1195

    .. math::
1196
        Out = MEAN(\lvert input - label \rvert)
1197

1198
    If `reduction` set to ``'sum'``, the loss is:
1199 1200

    .. math::
1201
        Out = SUM(\lvert input - label \rvert)
1202

1203

1204
    Parameters:
N
Noel 已提交
1205 1206
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1207
        reduction (str, optional): Indicate the reduction to apply to the loss,
1208
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1209 1210 1211
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1212 1213
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1214

1215
    Returns:
1216 1217 1218
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1219

1220 1221
    Examples:
        .. code-block:: python
N
Noel 已提交
1222

1223
            import paddle
1224

1225 1226
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1227

1228
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1229
            print(l1_loss.numpy())
1230 1231
            # [0.35]

1232
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1233
            print(l1_loss.numpy())
1234 1235 1236
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1237
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1238
            print(l1_loss.numpy())
1239 1240 1241 1242 1243 1244 1245
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

1246
    if in_dygraph_mode():
1247 1248 1249 1250 1251
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1252 1253 1254 1255 1256 1257 1258 1259
        if reduction == 'mean':
            return _C_ops.final_state_mean_all(unreduced)
        elif reduction == 'sum':
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
        else:
            return unreduced
    elif in_dynamic_mode():
1260 1261 1262 1263 1264
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1265
        if reduction == 'mean':
W
wanghuancoder 已提交
1266
            return _C_ops.mean(unreduced)
1267
        elif reduction == 'sum':
W
wanghuancoder 已提交
1268 1269
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
1270 1271 1272
        else:
            return unreduced

1273 1274 1275 1276 1277 1278
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
    check_variable_and_dtype(label, 'label',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
1279 1280

    if reduction == 'sum':
1281
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1282 1283
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1284
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1285 1286
        return paddle.mean(unreduced, name=name)
    else:
1287 1288 1289 1290
        return paddle.fluid.layers.elementwise_sub(input,
                                                   label,
                                                   act='abs',
                                                   name=name)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1329

1330 1331 1332 1333
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1334 1335 1336 1337 1338
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1339
                log_out = log_softmax(input)
1340
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1341
                result = nll_loss(log_out, label)
1342
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1343 1344 1345 1346 1347 1348 1349 1350 1351
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1352 1353
        raise ValueError(
            'Expected 2 or more dimensions (got {})'.format(input_dims))
1354 1355
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = _C_ops.final_state_nll_loss(input, label, weight,
                                                        ignore_index, reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
        return out
    if _in_legacy_dygraph():
1367
        if input_dims != 2 and input_dims != 4:
W
wanghuancoder 已提交
1368 1369
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1370
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1371

W
wanghuancoder 已提交
1372 1373 1374
        out, total_weight = _C_ops.nll_loss(input, label, weight,
                                            'ignore_index', ignore_index,
                                            'reduction', reduction)
1375
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
W
wanghuancoder 已提交
1376
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
1377 1378 1379 1380 1381 1382 1383 1384 1385
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1386 1387
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1398 1399 1400 1401
    helper.append_op(type='nll_loss',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
1402 1403 1404 1405
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1406 1407


1408
def kl_div(input, label, reduction='mean', name=None):
1409
    r"""
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1421
    the same shape as input, loss in each point is calculated
1422
    separately and no reduction is applied.
1423

1424 1425
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1426

1427 1428
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1429 1430

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1431 1432 1433 1434
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1435
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1436 1437 1438 1439 1440 1441 1442 1443 1444
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1445
        name(str, optional): Name for the operation (optional, default is None). For more information,
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
1457

1458 1459 1460 1461
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
1462
            # 'batchmean' reduction, loss shape will be [1]
1463 1464
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
1465
            # shape=[1]
1466

1467
            # 'mean' reduction, loss shape will be [1]
1468 1469
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
1470 1471 1472
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1473 1474
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
1475 1476 1477
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1478 1479
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
1480 1481 1482
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1483 1484 1485 1486
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
1487
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
1488 1489 1490
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
1491
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1492

1493 1494 1495 1496 1497
    if _non_static_mode():
        if _in_legacy_dygraph():
            out = _C_ops.kldiv_loss(input, label, 'reduction', 'none')
        else:
            out = _C_ops.final_state_kldiv_loss(input, label, 'none')
1498 1499 1500 1501 1502 1503 1504 1505
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1506 1507 1508 1509
        return out

    helper = LayerHelper('kl_div', **locals())

1510 1511
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1512 1513 1514
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1515 1516 1517 1518 1519 1520 1521
    helper.append_op(type='kldiv_loss',
                     inputs={
                         'X': input,
                         'Target': label
                     },
                     outputs={'Loss': loss},
                     attrs={'reduction': 'none'})
1522 1523 1524 1525 1526 1527 1528 1529

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1530 1531 1532
    return loss


1533
def mse_loss(input, label, reduction='mean', name=None):
1534
    r"""
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
1568

1569 1570 1571
    Examples:

        .. code-block:: python
1572

1573 1574
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1575 1576
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1577
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1578
            print(output)
1579 1580 1581 1582 1583 1584 1585 1586 1587
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1588
    if not in_dynamic_mode():
1589 1590 1591 1592
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'mse_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'mse_loss')
1593 1594

    if reduction == 'none':
1595
        return paddle.square(paddle.subtract(input, label), name=name)
1596
    elif reduction == 'mean':
1597 1598
        return paddle.mean(paddle.square(paddle.subtract(input, label)),
                           name=name)
1599
    else:
1600
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1601
                          name=name)
1602 1603


1604 1605 1606 1607 1608
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1609
             reduction='mean',
H
Hui Zhang 已提交
1610
             norm_by_times=False):
1611 1612
    """

1613 1614 1615
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1616 1617 1618
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1619
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1620 1621 1622 1623 1624
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1625
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1626

1627 1628
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1668 1669 1670 1671
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1672

1673 1674 1675 1676
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1677
                reduction='none')
1678
            print(loss)  #[3.9179852 2.9076521]
1679

1680 1681 1682 1683 1684
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1685
            print(loss)  #[1.1376063]
1686 1687 1688

    """

1689
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1690
                                    input_lengths, label_lengths)
1691

Z
zhiboniu 已提交
1692
    loss_out = paddle.squeeze(loss_out, [-1])
1693 1694
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1695
        loss_out = paddle.mean(loss_out / label_lengths)
1696 1697 1698 1699 1700
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1701 1702 1703 1704 1705 1706 1707 1708 1709
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1710
    r"""
1711 1712
    .. math::

1713
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1714

1715
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1716 1717 1718 1719
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1720 1721 1722 1723 1724 1725
        The API supports single GPU and multi GPU, and don't supports CPU.

        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1726 1727

    Args:
G
Guoxia Wang 已提交
1728
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1729
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1730 1731 1732 1733 1734
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1735 1736 1737
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1756
        :name: code-example1
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
        
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1805
        :name: code-example2
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py 
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1896 1897 1898 1899 1900 1901 1902
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1903 1904
        return

1905
    ring_id = 0
1906 1907
    rank = 0
    nranks = 1
1908 1909 1910 1911 1912 1913 1914 1915
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1916 1917 1918 1919 1920

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1921
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1922 1923 1924 1925
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

Z
zhiboniu 已提交
1926
    if in_dynamic_mode():
1927
        softmax, loss = _C_ops.margin_cross_entropy(
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    helper.append_op(type=op_type,
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs={
                         'return_softmax': return_softmax,
                         'ring_id': ring_id,
                         'rank': rank,
                         'nranks': nranks,
                         'margin1': margin1,
                         'margin2': margin2,
                         'margin3': margin3,
                         'scale': scale,
                     })
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


1982 1983 1984 1985
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
1986 1987 1988
    reason=
    ('Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
     'and "paddle.nn.functional.cross_entropy" is different.'))
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


2001 2002 2003 2004
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
2005 2006 2007
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
2008
                  use_softmax=True,
2009
                  name=None):
2010
    r"""
H
HydrogenSulfate 已提交
2011 2012 2013
    By default, this operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable computing. 
2014

2015
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2016

H
HydrogenSulfate 已提交
2017 2018
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
2019
    parameters for details.
2020

2021
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
H
HydrogenSulfate 已提交
2022
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
2023
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2024

2025
    The calculation of this operator includes the following two steps.
2026

2027
    - **1.softmax cross entropy**
2028

2029
        1. Hard label (each sample can only be assigned into one category)
2030

2031
        1.1. when use_softmax=True
2032

2033 2034
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
H
HydrogenSulfate 已提交
2077
                \\loss_j=loss_j*weight[label_j] 
2078

2079

2080 2081 2082 2083 2084 2085 2086
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

H
HydrogenSulfate 已提交
2087
            2.1 if the ``reduction`` parameter is ``none`` 
2088 2089 2090

                Return the previous result directly

H
HydrogenSulfate 已提交
2091
            2.2 if the ``reduction`` parameter is ``sum`` 
2092 2093 2094 2095 2096 2097

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

H
HydrogenSulfate 已提交
2098 2099
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 
2100

H
HydrogenSulfate 已提交
2101
            2.3.1. If the  ``weight``  parameter is ``None`` 
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

                   Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
H
HydrogenSulfate 已提交
2115
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 
2116 2117 2118 2119 2120

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
H
HydrogenSulfate 已提交
2121 2122
 
 
2123
    Parameters:
2124 2125 2126 2127

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
H
HydrogenSulfate 已提交
2128
	    :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 
2129

H
HydrogenSulfate 已提交
2130
            Note: 
2131

H
HydrogenSulfate 已提交
2132
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
2133 2134 2135
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
H
HydrogenSulfate 已提交
2136
 
2137 2138 2139 2140 2141 2142
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

H
HydrogenSulfate 已提交
2143
            2. If soft_label=True, the shape and data type should be same with ``input`` , 
2144 2145 2146 2147
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

H
HydrogenSulfate 已提交
2148 2149
            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
2150 2151 2152 2153 2154
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
H
HydrogenSulfate 已提交
2155 2156
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
2157 2158 2159 2160 2161
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2162 2163
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2164
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2165 2166
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2167

2168 2169
        - **soft_label** (bool, optional)

H
HydrogenSulfate 已提交
2170
            Indicate whether label is soft. 
2171 2172 2173 2174
            Default is ``False``.

        - **axis** (int, optional)

H
HydrogenSulfate 已提交
2175 2176 2177
            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the 
            number of dimensions of input :attr:`input`. 
2178 2179 2180 2181 2182 2183 2184
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2185
        - **name** (str, optional)
2186 2187 2188

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2189 2190 2191

    Returns:

2192 2193
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2194

2195
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2196

2197
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2198

H
HydrogenSulfate 已提交
2199
        1. If soft_label = False, the dimension of return value is the same with ``label`` . 
C
Chen Long 已提交
2200

H
HydrogenSulfate 已提交
2201
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 
2202 2203 2204 2205 2206


     Example1(hard labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
2207
            
2208 2209 2210 2211 2212
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
H
HydrogenSulfate 已提交
2213
            input =  paddle.rand([N, C], dtype='float64')  
2214
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
H
HydrogenSulfate 已提交
2215 2216
            weight = paddle.rand([C], dtype='float64') 
            
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]


    Example2(soft labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
2228
            
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
H
HydrogenSulfate 已提交
2242 2243 2244
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
2245 2246 2247 2248
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2249

2250 2251 2252 2253
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2254 2255 2256
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
2257 2258 2259 2260 2261 2262
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

2263
    input_dims = len(list(input.shape))
2264 2265 2266
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2267 2268
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2269
        raise ValueError(
2270 2271 2272 2273
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2274 2275

    if _non_static_mode():
H
HydrogenSulfate 已提交
2276
        if soft_label == False:
2277 2278
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
H
HydrogenSulfate 已提交
2279 2280 2281
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2282 2283
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
2284
            if label_max >= input.shape[axis]:
2285 2286
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
2287
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2288 2289 2290 2291 2292
            _, _, out = _C_ops.softmax_with_cross_entropy(
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
        else:
2293 2294 2295 2296 2297 2298 2299 2300 2301
            if in_dygraph_mode():
                _, out = _C_ops.final_state_cross_entropy_with_softmax(
                    input, label, soft_label, use_softmax, True, ignore_index,
                    axis)
            if _in_legacy_dygraph():
                _, out = _C_ops.softmax_with_cross_entropy(
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2302

2303
        if weight is not None:
2304

H
HydrogenSulfate 已提交
2305
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2306 2307
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2308
                # weight's shape is C, where C is class num.
2309 2310
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2311 2312 2313 2314 2315
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
2316 2317 2318 2319
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

W
wanghuancoder 已提交
2320
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
2321 2322

            else:
2323 2324 2325 2326 2327 2328 2329
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
2330 2331
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
2332
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2333
                        axis] == 1:
H
HydrogenSulfate 已提交
2334
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
2335 2336
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
2337
                if axis != -1 and axis != valid_label.ndim - 1:
2338
                    temp_perm = list(range(axis % valid_label.ndim)) \
2339
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
2340
                                + [axis % valid_label.ndim]
2341 2342 2343 2344
                    weight_gather = _C_ops.gather_nd(
                        weight, valid_label.transpose(temp_perm))
                else:
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2345 2346
                weight_gather = _C_ops.elementwise_mul(weight_gather,
                                                       ignore_weight_mask)
2347
                input_shape = list(label.shape)
2348 2349
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
2350
                out = paddle.cast(out, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
2351
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
2352

2353
        if reduction == "sum":
H
HydrogenSulfate 已提交
2354
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2355 2356
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
W
wanghuancoder 已提交
2357
            return _C_ops.reduce_sum(out, 'reduce_all', True)
2358
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2359 2360 2361 2362 2363 2364
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2365
            if ignore_index >= 0:
W
wanghuancoder 已提交
2366
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2367 2368 2369
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2370
                mask = (label != ignore_index)
2371
                if weight is None:
2372
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
W
wanghuancoder 已提交
2373
                    count = _C_ops.reduce_sum(mask, 'reduce_all', True)
2374
                    ret = out_sum / (count + (count == 0.0))
2375 2376
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
2377
                    weight_ignored = _C_ops.elementwise_mul(
2378
                        mask, weight_gather_reshape)
W
wanghuancoder 已提交
2379 2380
                    weight_sum = _C_ops.reduce_sum(weight_ignored, 'reduce_all',
                                                   True)
2381
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2382 2383
                return ret
            elif weight is not None:
W
wanghuancoder 已提交
2384 2385 2386
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _C_ops.reduce_sum(weight_gather_reshape,
                                                 'reduce_all', True)
2387
                return out_sum / (total_weight + (total_weight == 0.0))
2388
            else:
2389 2390 2391 2392
                if in_dygraph_mode():
                    return _C_ops.final_state_mean_all(out)
                else:
                    return _C_ops.mean(out)
2393

2394
        else:
2395 2396
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2397
            return out
2398

2399 2400 2401
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'softmax_cross_entropy')
    check_variable_and_dtype(
2402 2403
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2404
        'softmax_cross_entropy')
2405 2406 2407 2408 2409
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2410
        'use_softmax': use_softmax
2411 2412 2413 2414
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2415 2416 2417 2418 2419

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2420 2421 2422 2423 2424 2425 2426
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': input,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
2427

2428
    if weight is not None:
2429 2430
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'softmax_cross_entropy')
2431
        weight_name = name if reduction == 'none' else None
2432 2433
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2434
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2435 2436 2437
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2438 2439 2440 2441
            weight_gather = paddle.matmul(x=paddle.cast(label, weight.dtype),
                                          y=weight,
                                          transpose_x=False,
                                          transpose_y=True)
2442 2443 2444 2445 2446

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2447 2448
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
2449 2450
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
2451
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
2452

H
HydrogenSulfate 已提交
2453
            valid_label = paddle.multiply(
2454
                paddle.cast(label != ignore_index, dtype=label.dtype), label)
H
HydrogenSulfate 已提交
2455 2456
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
2457
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2458 2459
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2460
            if axis != -1 and axis != valid_label.ndim - 1:
2461
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
2462
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
2463 2464 2465 2466 2467
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2468 2469
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2470 2471
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2472
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2473

2474 2475 2476
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2477
        if ignore_index >= 0:
2478
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2479 2480 2481
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2482 2483 2484 2485
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2486
                ret = out_sum / (count + (count == 0.0))
2487 2488 2489 2490
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2491
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2492 2493
            return ret
        elif weight is not None:
2494 2495
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2496
            return out_sum / (total_weight + (total_weight == 0.0))
2497 2498
        else:
            return paddle.mean(out, name=name)
2499

2500
    else:
2501 2502 2503
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

2504
        return out
2505 2506 2507 2508 2509 2510 2511 2512 2513


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
2514
    r"""
2515 2516 2517 2518 2519 2520
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

H
HydrogenSulfate 已提交
2521
    This operator measures focal loss function as follows: 
2522 2523

    .. math::
2524
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2525

H
HydrogenSulfate 已提交
2526
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`. 
2527 2528 2529 2530 2531

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2532
           Out = \frac{Out}{normalizer}
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2550
            For object detection task, it is the number of positive samples.
2551 2552
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
H
HydrogenSulfate 已提交
2553
            it should be between 0 and 1.  Default value is set to 0.25. 
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2578
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2579
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2580
            print(output)  # [0.65782464]
2581 2582 2583 2584 2585 2586 2587 2588 2589

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
2590 2591
        check_variable_and_dtype(normalizer, 'normalizer',
                                 ['float32', 'float64'], 'sigmoid_focal_loss')
2592 2593 2594 2595
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2596 2597
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}."
                .format(normalizer_dims))
2598

H
hong 已提交
2599
    if _non_static_mode():
2600
        one = _varbase_creator(dtype=logit.dtype)
2601 2602 2603
        _C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu', False,
                             'dtype', one.dtype, 'str_value', '1.0', 'shape',
                             logit.shape)
H
hong 已提交
2604 2605 2606 2607 2608
        if in_dygraph_mode():
            loss = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
            loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
W
wanghuancoder 已提交
2609 2610 2611
        pred = _C_ops.sigmoid(logit)
        p_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(pred, label),
2612 2613
            _C_ops.elementwise_mul(_C_ops.elementwise_sub(one, pred),
                                   _C_ops.elementwise_sub(one, label)))
2614 2615

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
W
wanghuancoder 已提交
2616 2617
        alpha_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(alpha, label),
2618 2619
            _C_ops.elementwise_mul(_C_ops.elementwise_sub(one, alpha),
                                   _C_ops.elementwise_sub(one, label)))
W
wanghuancoder 已提交
2620
        loss = _C_ops.elementwise_mul(alpha_t, loss)
2621 2622

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2623 2624
        gamma_t = _C_ops.elementwise_pow(_C_ops.elementwise_sub(one, p_t),
                                         gamma)
W
wanghuancoder 已提交
2625
        loss = _C_ops.elementwise_mul(gamma_t, loss)
2626 2627

        if normalizer is not None:
W
wanghuancoder 已提交
2628
            loss = _C_ops.elementwise_div(loss, normalizer)
2629 2630

        if reduction == "sum":
W
wanghuancoder 已提交
2631
            return _C_ops.reduce_sum(loss, 'reduce_all', True)
2632
        elif reduction == "mean":
2633 2634
            if in_dygraph_mode():
                return _C_ops.final_state_mean_all(loss)
W
wanghuancoder 已提交
2635
            return _C_ops.mean(loss)
2636 2637 2638

        return loss

2639 2640 2641 2642
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'sigmoid_focal_loss')
2643 2644 2645 2646 2647 2648 2649

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2650
    pred = paddle.nn.functional.sigmoid(logit)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749


def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

2750
    if not _non_static_mode():
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874


def cosine_embedding_loss(input1,
                          input2,
                          label,
                          margin=0,
                          reduction='mean',
                          name=None):
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python
          :name: code-example1

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
            "1D target tensor expected, multi-target not supported")

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
            "different sizes")

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
            "The data type of input Variable must be 'float32' or 'float64'")
    if label.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001


def triplet_margin_with_distance_loss(input,
                                      positive,
                                      negative,
                                      distance_function=None,
                                      margin=1.0,
                                      swap=False,
                                      reduction='mean',
                                      name=None):
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference 
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
	
	    margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0.
	
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
	    
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError("'reduction' in 'triplet_margin_with_distance_loss' "
                         "should be 'sum', 'mean' or 'none', "
                         "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = distance_function if distance_function is not None \
        else paddle.nn.PairwiseDistance(2)

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
            "The distance functions should be checked.")

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss