Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a2327374
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a2327374
编写于
8月 15, 2021
作者:
H
HydrogenSulfate
提交者:
chajchaj
8月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update loss.py
上级
87513117
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
5 addition
and
5 deletion
+5
-5
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+5
-5
未找到文件。
python/paddle/nn/functional/loss.py
浏览文件 @
a2327374
...
...
@@ -1521,7 +1521,7 @@ def cross_entropy(input,
:math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
the data type is int32, int64, float32, float64, where each value is [0, C-1].
2. If soft_label=True, the shape and data type should be same with ``input`` ,
2. If soft_label=True, the shape and data type should be same with ``input`` ,
and the sum of the labels for each sample should be 1.
- **weight** (Tensor, optional)
...
...
@@ -1606,7 +1606,7 @@ def cross_entropy(input,
Example2(soft labels):
.. code-block:: python
import paddle
paddle.seed(99999)
axis = -1
...
...
@@ -1889,12 +1889,12 @@ def sigmoid_focal_loss(logit,
it is used in one-stage object detection where the foreground-background class
imbalance is extremely high.
This operator measures focal loss function as follows:
This operator measures focal loss function as follows:
.. math::
Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
Then, if :attr:`normalizer` is not None, this operator divides the
normalizer tensor on the loss `Out`:
...
...
@@ -1921,7 +1921,7 @@ def sigmoid_focal_loss(logit,
For object detection task, it is the the number of positive samples.
If set to None, the focal loss will not be normalized. Default is None.
alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
it should be between 0 and 1. Default value is set to 0.25.
it should be between 0 and 1. Default value is set to 0.25.
gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
Default value is set to 2.0.
reduction (str, optional): Indicate how to average the loss by batch_size,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录