test_recognize_digits.py 10.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle.fluid.core as core
16
import math
武毅 已提交
17
import os
18 19 20 21 22 23 24
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
Y
Yang Yu 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28 29 30 31 32 33
BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
34
    avg_loss = paddle.mean(loss)
L
Liu Yiqun 已提交
35 36
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
37 38 39 40 41 42 43 44 45


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
46 47 48 49 50 51 52 53
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
Y
Yang Yang(Tony) 已提交
54
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
55 56 57 58 59 60 61 62
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
Y
Yang Yu 已提交
63 64 65
    return loss_net(conv_pool_2, label)


66 67 68 69 70 71 72 73 74 75
def train(
    nn_type,
    use_cuda,
    parallel,
    save_dirname=None,
    save_full_dirname=None,
    model_filename=None,
    params_filename=None,
    is_local=True,
):
76 77
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
78 79 80
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

81
    if nn_type == 'mlp':
Y
Yang Yu 已提交
82 83 84 85
        net_conf = mlp
    else:
        net_conf = conv_net

86
    if parallel:
X
Xin Pan 已提交
87
        raise NotImplementedError()
Y
Yang Yu 已提交
88
    else:
L
Liu Yiqun 已提交
89
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
90

91
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
92

X
Xin Pan 已提交
93
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
94
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
95

96
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
97 98 99

    exe = fluid.Executor(place)

100 101 102 103 104 105 106
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE,
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE
    )
Y
Yang Yu 已提交
107 108
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
124 125
                            fetch_list=[acc, avg_loss],
                        )
武毅 已提交
126 127 128 129 130
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
Q
Qi Li 已提交
131 132
                    if float(acc_val) > 0.2 or pass_id == (PASS_NUM - 1):
                        # Smaller value to increase CI speed
武毅 已提交
133 134
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
135 136 137
                                save_dirname,
                                ["img"],
                                [prediction],
武毅 已提交
138 139
                                exe,
                                model_filename=model_filename,
140 141
                                params_filename=params_filename,
                            )
X
Xin Pan 已提交
142 143
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
144 145 146
                                save_full_dirname,
                                [],
                                [],
X
Xin Pan 已提交
147 148 149
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
150 151
                                export_for_deployment=False,
                            )
武毅 已提交
152 153
                        return
                    else:
154
                        print(
155 156 157 158 159 160 161
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.format(
                                pass_id,
                                batch_id + 1,
                                float(avg_loss_val),
                                float(acc_val),
                            )
                        )
武毅 已提交
162 163 164 165 166 167 168
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
169 170
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
171 172 173 174
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
175
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
176
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
177 178
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
179
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
180
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
181 182
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
183 184 185
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
186 187 188 189
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
190 191


192 193 194
def infer(
    use_cuda, save_dirname=None, model_filename=None, params_filename=None
):
L
Liu Yiqun 已提交
195 196 197
    if save_dirname is None:
        return

198
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
199 200
    exe = fluid.Executor(place)

201 202 203 204 205 206
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
207 208 209 210 211 212 213
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(
            save_dirname, exe, model_filename, params_filename
        )
214 215 216 217 218

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
219 220
            -1.0, 1.0, [batch_size, 1, 28, 28]
        ).astype("float32")
221 222 223

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
224 225 226 227 228
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_img},
            fetch_list=fetch_targets,
        )
229
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
230 231


232
def main(use_cuda, parallel, nn_type, combine):
233
    save_dirname = None
X
Xin Pan 已提交
234
    save_full_dirname = None
235 236
    model_filename = None
    params_filename = None
237 238
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
239
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
240
        if combine:
241 242
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
243

武毅 已提交
244
    # call train() with is_local argument to run distributed train
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
        save_dirname=save_dirname,
        save_full_dirname=save_full_dirname,
        model_filename=model_filename,
        params_filename=params_filename,
    )
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
        model_filename=model_filename,
        params_filename=params_filename,
    )
260 261 262 263 264 265


class TestRecognizeDigits(unittest.TestCase):
    pass


266
def inject_test_method(use_cuda, parallel, nn_type, combine):
267 268 269 270 271 272
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
273
                main(use_cuda, parallel, nn_type, combine)
274

275 276 277 278 279 280
    fn = 'test_{0}_{1}_{2}_{3}'.format(
        nn_type,
        'cuda' if use_cuda else 'cpu',
        'parallel' if parallel else 'normal',
        'combine' if combine else 'separate',
    )
281 282 283 284 285 286

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
287 288
        if use_cuda and not core.is_compiled_with_cuda():
            continue
289
        for parallel in (False,):
290
            for nn_type in ('mlp', 'conv'):
291 292
                inject_test_method(use_cuda, parallel, nn_type, True)

293
    # Two unit-test for saving parameters as separate files
294
    inject_test_method(False, False, 'mlp', False)
295
    inject_test_method(False, False, 'conv', False)
296 297 298 299 300 301


inject_all_tests()

if __name__ == '__main__':
    unittest.main()