test_recognize_digits.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Q
qingqing01 已提交
28
from paddle.fluid.layers.control_flow import ParallelDo
Y
Yang Yu 已提交
29 30 31 32 33 34 35

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
36
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
37 38
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
55
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
56 57 58 59 60 61 62 63 64 65
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


66 67 68 69
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
70
          save_full_dirname=None,
71
          model_filename=None,
武毅 已提交
72 73
          params_filename=None,
          is_local=True):
74 75
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
76 77 78
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

79
    if nn_type == 'mlp':
Y
Yang Yu 已提交
80 81 82 83
        net_conf = mlp
    else:
        net_conf = conv_net

84
    if parallel:
85
        places = get_places()
Q
qingqing01 已提交
86
        pd = ParallelDo(places)
Y
Yang Yu 已提交
87 88 89
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
90 91
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
92 93 94 95
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
96 97
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
98
    else:
L
Liu Yiqun 已提交
99
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
100

101
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
102

X
Xin Pan 已提交
103
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
104
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
105

106
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
107 108 109 110 111 112 113

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
114 115
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
116 117
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
147 148
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
149
                                save_full_dirname, [], [],
X
Xin Pan 已提交
150 151 152 153
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
154 155
                        return
                    else:
156
                        print(
武毅 已提交
157 158
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
159
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
160 161 162 163 164 165 166
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
167 168
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
169 170 171 172
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
173
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
174
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
175 176
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
177
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
178
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
179 180 181 182 183 184 185 186
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
187 188


189 190 191 192
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
193 194 195
    if save_dirname is None:
        return

196
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
197 198
    exe = fluid.Executor(place)

199 200 201 202 203 204
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
205 206 207
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
208 209 210 211 212 213 214 215 216 217 218 219

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
220
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
221 222


223
def main(use_cuda, parallel, nn_type, combine):
224
    save_dirname = None
X
Xin Pan 已提交
225
    save_full_dirname = None
226 227
    model_filename = None
    params_filename = None
228 229
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
230
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
231
        if combine == True:
232 233
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
234

武毅 已提交
235
    # call train() with is_local argument to run distributed train
236 237 238 239
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
240
        save_dirname=save_dirname,
X
Xin Pan 已提交
241
        save_full_dirname=save_full_dirname,
242 243
        model_filename=model_filename,
        params_filename=params_filename)
244 245 246
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
247 248
        model_filename=model_filename,
        params_filename=params_filename)
249 250 251 252 253 254


class TestRecognizeDigits(unittest.TestCase):
    pass


255
def inject_test_method(use_cuda, parallel, nn_type, combine):
256 257 258 259 260 261
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
262
                main(use_cuda, parallel, nn_type, combine)
263

264 265 266 267
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
268 269 270 271 272 273

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
274 275
        if use_cuda and not core.is_compiled_with_cuda():
            continue
276 277
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
278 279
                inject_test_method(use_cuda, parallel, nn_type, True)

280
    # Two unit-test for saving parameters as separate files
281
    inject_test_method(False, False, 'mlp', False)
282
    inject_test_method(False, False, 'conv', False)
283 284 285 286 287 288


inject_all_tests()

if __name__ == '__main__':
    unittest.main()