test_recognize_digits.py 10.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle.fluid.core as core
16
import math
武毅 已提交
17
import os
18 19 20 21 22 23 24
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
Y
Yang Yu 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28 29 30 31 32 33
BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
34
    avg_loss = paddle.mean(loss)
L
Liu Yiqun 已提交
35 36
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
37 38 39 40 41 42 43 44 45


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
46 47 48 49 50 51
    conv_pool_1 = fluid.nets.simple_img_conv_pool(input=img,
                                                  filter_size=5,
                                                  num_filters=20,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yang(Tony) 已提交
52
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
53 54 55 56 57 58
    conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1,
                                                  filter_size=5,
                                                  num_filters=50,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yu 已提交
59 60 61
    return loss_net(conv_pool_2, label)


62 63 64 65
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
66
          save_full_dirname=None,
67
          model_filename=None,
武毅 已提交
68 69
          params_filename=None,
          is_local=True):
70 71
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
72 73 74
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

75
    if nn_type == 'mlp':
Y
Yang Yu 已提交
76 77 78 79
        net_conf = mlp
    else:
        net_conf = conv_net

80
    if parallel:
X
Xin Pan 已提交
81
        raise NotImplementedError()
Y
Yang Yu 已提交
82
    else:
L
Liu Yiqun 已提交
83
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
84

85
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
86

X
Xin Pan 已提交
87
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
88
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
89

90
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
91 92 93

    exe = fluid.Executor(place)

94 95 96 97 98
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=500),
                                batch_size=BATCH_SIZE)
    test_reader = paddle.batch(paddle.dataset.mnist.test(),
                               batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
99 100
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
Q
Qi Li 已提交
122 123
                    if float(acc_val) > 0.2 or pass_id == (PASS_NUM - 1):
                        # Smaller value to increase CI speed
武毅 已提交
124 125 126 127 128 129
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
130 131
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
132
                                save_full_dirname, [], [],
X
Xin Pan 已提交
133 134 135 136
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
137 138
                        return
                    else:
139
                        print(
140 141 142
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                            .format(pass_id, batch_id + 1, float(avg_loss_val),
                                    float(acc_val)))
武毅 已提交
143 144 145 146 147 148 149
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
150 151
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
152 153 154 155
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
156
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
157
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
158 159
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
160
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
161
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
162 163 164 165 166 167 168 169
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
170 171


172 173 174 175
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
176 177 178
    if save_dirname is None:
        return

179
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
180 181
    exe = fluid.Executor(place)

182 183 184 185 186 187
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
188
        [inference_program, feed_target_names,
189 190 191
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe,
                                                        model_filename,
                                                        params_filename)
192 193 194 195 196 197 198 199 200 201 202 203

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
204
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
205 206


207
def main(use_cuda, parallel, nn_type, combine):
208
    save_dirname = None
X
Xin Pan 已提交
209
    save_full_dirname = None
210 211
    model_filename = None
    params_filename = None
212 213
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
214
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
215
        if combine == True:
216 217
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
218

武毅 已提交
219
    # call train() with is_local argument to run distributed train
220 221 222 223 224 225 226 227 228 229 230
    train(nn_type=nn_type,
          use_cuda=use_cuda,
          parallel=parallel,
          save_dirname=save_dirname,
          save_full_dirname=save_full_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
    infer(use_cuda=use_cuda,
          save_dirname=save_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
231 232 233 234 235 236


class TestRecognizeDigits(unittest.TestCase):
    pass


237
def inject_test_method(use_cuda, parallel, nn_type, combine):
238

239 240 241 242 243 244
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
245
                main(use_cuda, parallel, nn_type, combine)
246

247 248 249
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda' if use_cuda else 'cpu',
                                       'parallel' if parallel else 'normal',
                                       'combine' if combine else 'separate')
250 251 252 253 254 255

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
256 257
        if use_cuda and not core.is_compiled_with_cuda():
            continue
X
fix  
Xin Pan 已提交
258
        for parallel in (False, ):
259
            for nn_type in ('mlp', 'conv'):
260 261
                inject_test_method(use_cuda, parallel, nn_type, True)

262
    # Two unit-test for saving parameters as separate files
263
    inject_test_method(False, False, 'mlp', False)
264
    inject_test_method(False, False, 'conv', False)
265 266 267 268 269 270


inject_all_tests()

if __name__ == '__main__':
    unittest.main()