“2db528034038f2b83070b1e8f1ff588dd9325d04”上不存在“python/git@gitcode.net:paddlepaddle/Serving.git”
test_recognize_digits.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
16
import paddle.fluid as fluid
17
import paddle
Y
Yang Yu 已提交
18
import sys
Y
Yang Yu 已提交
19
import numpy
20
import unittest
21 22
import math
import sys
武毅 已提交
23
import os
Y
Yang Yu 已提交
24 25 26 27 28 29 30

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
31
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
32 33
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
50
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
51 52 53 54 55 56 57 58 59 60
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


61 62 63 64 65
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
66 67
          params_filename=None,
          is_local=True):
68 69
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
70 71 72
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

73
    if nn_type == 'mlp':
Y
Yang Yu 已提交
74 75 76 77
        net_conf = mlp
    else:
        net_conf = conv_net

78
    if parallel:
Y
Yang Yu 已提交
79 80 81 82 83
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
84 85
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
86 87 88 89
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
90 91
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
92
    else:
L
Liu Yiqun 已提交
93
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
94

95
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
96

W
Wu Yi 已提交
97
    optimizer = fluid.optimizer.Adam(learning_rate=0.001, LARS_weight_decay=0.3)
W
Wu Yi 已提交
98
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
99

100
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
101 102 103 104 105 106 107

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
108 109
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
110 111
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
                        print(
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
                                   float(avg_loss_val), float(acc_val)))
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
154 155
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
156 157 158 159
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
160
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
161
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
162 163
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
164
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
165
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
166 167 168 169 170 171 172 173
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
174 175


176 177 178 179
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
180 181 182
    if save_dirname is None:
        return

183
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
184 185
    exe = fluid.Executor(place)

186 187 188 189 190 191
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
192 193 194
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
195 196 197 198 199 200 201 202 203 204 205 206 207

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
208 209


210
def main(use_cuda, parallel, nn_type, combine):
211 212 213
    save_dirname = None
    model_filename = None
    params_filename = None
214 215
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
216
        if combine == True:
217 218
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
219

武毅 已提交
220
    # call train() with is_local argument to run distributed train
221 222 223 224
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
225
        save_dirname=save_dirname,
226 227
        model_filename=model_filename,
        params_filename=params_filename)
228 229 230
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
231 232
        model_filename=model_filename,
        params_filename=params_filename)
233 234 235 236 237 238


class TestRecognizeDigits(unittest.TestCase):
    pass


239
def inject_test_method(use_cuda, parallel, nn_type, combine):
240 241 242 243 244 245
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
246
                main(use_cuda, parallel, nn_type, combine)
247

248 249 250 251
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
252 253 254 255 256 257 258 259

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
260 261
                inject_test_method(use_cuda, parallel, nn_type, True)

262
    # Two unit-test for saving parameters as separate files
263
    inject_test_method(False, False, 'mlp', False)
264
    inject_test_method(False, False, 'conv', False)
265 266 267 268 269 270


inject_all_tests()

if __name__ == '__main__':
    unittest.main()