grid_sampler_cudnn_op.cu.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dengkaipeng 已提交
14

15 16 17
#ifndef PADDLE_WITH_HIP
// HIP not support cudnnSpatialTfGridGeneratorForward

D
dengkaipeng 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

D
dengkaipeng 已提交
27 28 29 30 31 32 33
namespace paddle {
namespace operators {

using framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using ScopedSpatialTransformerDescriptor =
34
    platform::ScopedSpatialTransformerDescriptor;
D
dengkaipeng 已提交
35 36 37 38 39
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
40 41
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
42 43 44
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
45 46 47 48 49 50 51 52
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output = ctx.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
53 54 55
    int out_h = grid->dims()[1];
    int out_w = grid->dims()[2];
    const int size[4] = {n, c, out_h, out_w};
56 57 58

    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
59 60
    T* output_data =
        output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
61 62 63

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
D
dengkaipeng 已提交
64 65
        st_desc.descriptor<T>(4, size);

66 67 68
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
69
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
70
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
71
        DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
72

73 74 75 76
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
        output_data));
77
  }
D
dengkaipeng 已提交
78 79 80 81
};

template <typename T>
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
82 83
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
84 85 86
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));

    auto output_grad_dims = output_grad->dims();
    const int n = output_grad_dims[0];
    const int c = output_grad_dims[1];
    const int h = output_grad_dims[2];
    const int w = output_grad_dims[3];
    const int size[4] = {n, c, h, w};

    ScopedSpatialTransformerDescriptor st_dest;
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
D
dengkaipeng 已提交
104 105
        st_dest.descriptor<T>(4, size);

106 107 108 109
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data =
110
        input_grad->mutable_data<T>(input->dims(), ctx.GetPlace());
111 112 113 114 115 116 117
    T* grid_grad_data =
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());

    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor input_grad_desc;
    ScopedTensorDescriptor output_grad_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
118
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
119 120
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
        input_grad_desc.descriptor<T>(
121
            DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
122 123
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
        output_grad_desc.descriptor<T>(
124
            DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
125

126 127 128 129 130 131
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSpatialTfSamplerBackward(
            handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
            input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
            input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
            output_grad_data, grid_data, CudnnDataType<T>::kZero(),
132
            grid_grad_data));
133
  }
D
dengkaipeng 已提交
134 135 136 137 138 139
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
140 141 142
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
D
dengkaipeng 已提交
143
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
144 145
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);
146 147

#endif  // PADDLE_WITH_HIP