grid_sampler_cudnn_op.cu.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dengkaipeng 已提交
14 15 16 17

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

W
wanghuancoder 已提交
18 19 20 21 22 23
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

D
dengkaipeng 已提交
24 25 26 27 28 29 30
namespace paddle {
namespace operators {

using framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using ScopedSpatialTransformerDescriptor =
31
    platform::ScopedSpatialTransformerDescriptor;
D
dengkaipeng 已提交
32 33 34 35 36
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
37 38
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
39 40 41
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
42 43 44 45 46 47 48 49
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output = ctx.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
50 51 52
    int out_h = grid->dims()[1];
    int out_w = grid->dims()[2];
    const int size[4] = {n, c, out_h, out_w};
53 54 55

    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
56 57
    T* output_data =
        output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
58 59 60

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
D
dengkaipeng 已提交
61 62
        st_desc.descriptor<T>(4, size);

63 64 65
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
66
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
67
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
68
        DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
69

70 71 72 73
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
        output_data));
74
  }
D
dengkaipeng 已提交
75 76 77 78
};

template <typename T>
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
79 80
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
81 82 83
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));

    auto output_grad_dims = output_grad->dims();
    const int n = output_grad_dims[0];
    const int c = output_grad_dims[1];
    const int h = output_grad_dims[2];
    const int w = output_grad_dims[3];
    const int size[4] = {n, c, h, w};

    ScopedSpatialTransformerDescriptor st_dest;
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
D
dengkaipeng 已提交
101 102
        st_dest.descriptor<T>(4, size);

103 104 105 106
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data =
107
        input_grad->mutable_data<T>(input->dims(), ctx.GetPlace());
108 109 110 111 112 113 114
    T* grid_grad_data =
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());

    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor input_grad_desc;
    ScopedTensorDescriptor output_grad_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
115
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
116 117
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
        input_grad_desc.descriptor<T>(
118
            DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
119 120
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
        output_grad_desc.descriptor<T>(
121
            DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
122

123 124 125 126 127 128
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSpatialTfSamplerBackward(
            handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
            input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
            input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
            output_grad_data, grid_data, CudnnDataType<T>::kZero(),
129
            grid_grad_data));
130
  }
D
dengkaipeng 已提交
131 132 133 134 135 136
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
137 138 139
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
D
dengkaipeng 已提交
140
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
141 142
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);