grid_sampler_cudnn_op.cu.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using ScopedSpatialTransformerDescriptor =
25
    platform::ScopedSpatialTransformerDescriptor;
D
dengkaipeng 已提交
26 27 28 29 30
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
31 32
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
33 34 35
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output = ctx.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
    int h = input->dims()[2];
    int w = input->dims()[3];
    const int size[4] = {n, c, h, w};

    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    T* output_data = output->mutable_data<T>({n, c, h, w}, ctx.GetPlace());

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
D
dengkaipeng 已提交
54 55
        st_desc.descriptor<T>(4, size);

56 57 58
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
59
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
60
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
61
        DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
62

63 64 65 66
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
        output_data));
67
  }
D
dengkaipeng 已提交
68 69 70 71
};

template <typename T>
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
72 73
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
74 75 76
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));

    auto output_grad_dims = output_grad->dims();
    const int n = output_grad_dims[0];
    const int c = output_grad_dims[1];
    const int h = output_grad_dims[2];
    const int w = output_grad_dims[3];
    const int size[4] = {n, c, h, w};

    ScopedSpatialTransformerDescriptor st_dest;
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
D
dengkaipeng 已提交
94 95
        st_dest.descriptor<T>(4, size);

96 97 98 99 100 101 102 103 104 105 106 107
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data =
        input_grad->mutable_data<T>(output_grad_dims, ctx.GetPlace());
    T* grid_grad_data =
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());

    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor input_grad_desc;
    ScopedTensorDescriptor output_grad_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
108
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
109 110
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
        input_grad_desc.descriptor<T>(
111
            DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
112 113
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
        output_grad_desc.descriptor<T>(
114
            DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
115

116 117 118 119 120 121
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSpatialTfSamplerBackward(
            handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
            input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
            input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
            output_grad_data, grid_data, CudnnDataType<T>::kZero(),
122
            grid_grad_data));
123
  }
D
dengkaipeng 已提交
124 125 126 127 128 129
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
130 131 132
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
D
dengkaipeng 已提交
133
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
134 135
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);