grid_sampler_cudnn_op.cu.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using ScopedSpatialTransformerDescriptor =
25
    platform::ScopedSpatialTransformerDescriptor;
D
dengkaipeng 已提交
26 27 28 29 30
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use CUDAPlace");
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output = ctx.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
    int h = input->dims()[2];
    int w = input->dims()[3];
    const int size[4] = {n, c, h, w};

    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    T* output_data = output->mutable_data<T>({n, c, h, w}, ctx.GetPlace());

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
D
dengkaipeng 已提交
53 54
        st_desc.descriptor<T>(4, size);

55 56 57 58 59 60 61 62 63 64 65 66
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        DataLayout::kNCHW, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        DataLayout::kNCHW, framework::vectorize2int(output->dims()));

    CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerForward(
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
        output_data));
  }
D
dengkaipeng 已提交
67 68 69 70
};

template <typename T>
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use CUDAPlace");
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));

    auto output_grad_dims = output_grad->dims();
    const int n = output_grad_dims[0];
    const int c = output_grad_dims[1];
    const int h = output_grad_dims[2];
    const int w = output_grad_dims[3];
    const int size[4] = {n, c, h, w};

    ScopedSpatialTransformerDescriptor st_dest;
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
D
dengkaipeng 已提交
92 93
        st_dest.descriptor<T>(4, size);

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data =
        input_grad->mutable_data<T>(output_grad_dims, ctx.GetPlace());
    T* grid_grad_data =
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());

    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor input_grad_desc;
    ScopedTensorDescriptor output_grad_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        DataLayout::kNCHW, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
        input_grad_desc.descriptor<T>(
            DataLayout::kNCHW, framework::vectorize2int(input_grad->dims()));
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
        output_grad_desc.descriptor<T>(
            DataLayout::kNCHW, framework::vectorize2int(output_grad->dims()));

    CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerBackward(
        handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
        input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
        output_grad_data, grid_data, CudnnDataType<T>::kZero(),
        grid_grad_data));
  }
D
dengkaipeng 已提交
121 122 123 124 125 126
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
127 128 129
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
D
dengkaipeng 已提交
130
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
131 132
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);