test_word2vec_book.py 12.7 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
import os
17
import sys
18
import tempfile
19 20 21 22 23 24
import unittest

import numpy as np

import paddle
import paddle.fluid as fluid
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

29 30 31 32 33 34 35 36 37
def get_place(target):
    if target == "cuda":
        return fluid.CUDAPlace(0)
    elif target == "xpu":
        return fluid.XPUPlace(0)
    elif target == "cpu":
        return fluid.CPUPlace()
    else:
        raise ValueError(
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
            "Target `{0}` is not on the support list: `cuda`, `xpu` and `cpu`.".format(
                target
            )
        )


def train(
    target,
    is_sparse,
    is_parallel,
    save_dirname,
    is_local=True,
    use_bf16=False,
    pure_bf16=False,
):
Y
Yang Yu 已提交
53 54 55 56 57
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
58 59 60
    IS_SPARSE = is_sparse

    def __network__(words):
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
Y
Yang Yu 已提交
89 90

        concat_embed = fluid.layers.concat(
91 92
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1
        )
C
Charles-hit 已提交
93 94
        hidden1 = paddle.static.nn.fc(
            x=concat_embed, size=HIDDEN_SIZE, activation='sigmoid'
95
        )
C
Charles-hit 已提交
96 97
        predict_word = paddle.static.nn.fc(
            x=hidden1, size=dict_size, activation='softmax'
98
        )
99 100 101 102 103 104
        cost = paddle.nn.functional.cross_entropy(
            input=predict_word,
            label=words[4],
            reduction='none',
            use_softmax=False,
        )
105
        avg_cost = paddle.mean(cost)
106
        return avg_cost, predict_word
Y
Yang Yu 已提交
107 108 109 110

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

G
GGBond8488 已提交
111 112 113 114 115 116 117
    first_word = paddle.static.data(name='firstw', shape=[-1, 1], dtype='int64')
    second_word = paddle.static.data(
        name='secondw', shape=[-1, 1], dtype='int64'
    )
    third_word = paddle.static.data(name='thirdw', shape=[-1, 1], dtype='int64')
    forth_word = paddle.static.data(name='forthw', shape=[-1, 1], dtype='int64')
    next_word = paddle.static.data(name='nextw', shape=[-1, 1], dtype='int64')
Y
Yang Yu 已提交
118

L
Liu Yiqun 已提交
119
    if not is_parallel:
120
        avg_cost, predict_word = __network__(
121 122
            [first_word, second_word, third_word, forth_word, next_word]
        )
Y
Yang Yu 已提交
123
    else:
X
Xin Pan 已提交
124
        raise NotImplementedError()
Y
Yang Yu 已提交
125

Y
Yang Yu 已提交
126
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
127
    if use_bf16:
A
arlesniak 已提交
128 129 130
        sgd_optimizer = paddle.static.amp.bf16.decorate_bf16(
            sgd_optimizer,
            amp_lists=paddle.static.amp.bf16.AutoMixedPrecisionListsBF16(
131 132
                custom_fp32_list={'softmax', 'concat'},
            ),
A
arlesniak 已提交
133
            use_bf16_guard=False,
134 135
            use_pure_bf16=pure_bf16,
        )
A
arlesniak 已提交
136

137
    sgd_optimizer.minimize(avg_cost, fluid.default_startup_program())
Y
Yang Yu 已提交
138

139 140 141
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE
    )
Y
Yang Yu 已提交
142

143
    place = get_place(target)
Y
Yang Yu 已提交
144 145 146
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
147 148
        place=place,
    )
Y
Yang Yu 已提交
149

武毅 已提交
150 151
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
A
arlesniak 已提交
152 153
        if pure_bf16:
            sgd_optimizer.amp_init(exe.place)
武毅 已提交
154 155 156

        for pass_id in range(PASS_NUM):
            for data in train_reader():
157 158 159
                avg_cost_np = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost]
                )
武毅 已提交
160
                if avg_cost_np[0] < 5.0:
A
arlesniak 已提交
161
                    if save_dirname is not None and not pure_bf16:
162 163 164
                        fluid.io.save_inference_model(
                            save_dirname,
                            ['firstw', 'secondw', 'thirdw', 'forthw'],
165 166 167
                            [predict_word],
                            exe,
                        )
武毅 已提交
168 169 170 171 172 173 174 175 176
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
177 178
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
179 180 181 182
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
183
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
184
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
185 186
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
187
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
188
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
189 190
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
191 192 193
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
194 195 196 197
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
198 199


200
def infer(target, save_dirname=None):
L
Liu Yiqun 已提交
201 202 203
    if save_dirname is None:
        return

204
    place = get_place(target)
L
Liu Yiqun 已提交
205
    exe = fluid.Executor(place)
206 207 208
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
209
        # the feed_target_names (the names of variables that will be fed
210 211
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
212 213 214 215 216
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
217 218 219 220

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

221 222 223 224 225
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
226 227 228
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
229
        base_shape = [1]
K
Kexin Zhao 已提交
230
        # The range of random integers is [low, high]
231 232 233 234 235 236 237 238 239 240 241 242
        first_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        second_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        third_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        fourth_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
243 244 245 246 247 248 249 250

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
251 252 253 254 255 256 257 258 259 260 261
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: first_word,
                feed_target_names[1]: second_word,
                feed_target_names[2]: third_word,
                feed_target_names[3]: fourth_word,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
F
flame 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
275
        infer_config.model_dir = save_dirname
276 277
        if target == "cuda":
            infer_config.use_gpu = True
F
flame 已提交
278 279
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
280 281
        elif target == "xpu":
            infer_config.use_xpu = True
F
flame 已提交
282
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
283
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
284 285
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
286
        np_data = np.array(results[0])
F
flame 已提交
287 288
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
289
            assert np.isclose(a, b, rtol=5e-5), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
290 291


A
arlesniak 已提交
292
def main(target, is_sparse, is_parallel, use_bf16, pure_bf16):
293 294 295
    if target == "cuda" and not fluid.core.is_compiled_with_cuda():
        return
    if target == "xpu" and not fluid.core.is_compiled_with_xpu():
296
        return
L
Liu Yiqun 已提交
297

298 299 300
    if use_bf16 and not fluid.core.is_compiled_with_mkldnn():
        return

301
    temp_dir = tempfile.TemporaryDirectory()
L
Liu Yiqun 已提交
302
    if not is_parallel:
303
        save_dirname = os.path.join(temp_dir.name, "word2vec.inference.model")
L
Liu Yiqun 已提交
304 305 306
    else:
        save_dirname = None

307 308 309 310 311
    if target == "xpu":
        # This model cannot be trained with xpu temporarily,
        # so only inference is turned on.
        train("cpu", is_sparse, is_parallel, save_dirname)
    else:
312 313 314 315 316 317 318 319
        train(
            target,
            is_sparse,
            is_parallel,
            save_dirname,
            use_bf16=use_bf16,
            pure_bf16=pure_bf16,
        )
320
    infer(target, save_dirname)
321
    temp_dir.cleanup()
322 323


324 325 326 327 328 329 330 331
FULL_TEST = os.getenv('FULL_TEST', '0').lower() in [
    'true',
    '1',
    't',
    'y',
    'yes',
    'on',
]
Y
Yang Yu 已提交
332
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
333 334 335


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
336 337 338
    pass


339 340 341
def inject_test_method(
    target, is_sparse, is_parallel, use_bf16=False, pure_bf16=False
):
342
    fn_name = "test_{0}_{1}_{2}{3}".format(
343 344
        target,
        "sparse" if is_sparse else "dense",
345
        "parallel" if is_parallel else "normal",
346 347
        "_purebf16" if pure_bf16 else "_bf16" if use_bf16 else "",
    )
Y
Yang Yu 已提交
348 349 350 351 352 353 354

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
A
arlesniak 已提交
355
                main(target, is_sparse, is_parallel, use_bf16, pure_bf16)
Y
Yang Yu 已提交
356

357 358 359
    if (
        not fluid.core.is_compiled_with_cuda() or target == "cuda"
    ) and is_sparse:
Y
Yang Yu 已提交
360 361 362
        fn = __impl__
    else:
        # skip the other test when on CI server
363 364 365
        fn = unittest.skipUnless(condition=FULL_TEST, reason=SKIP_REASON)(
            __impl__
        )
Y
Yang Yu 已提交
366 367

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
368 369


370
for target in ("cuda", "cpu", "xpu"):
Y
Yang Yu 已提交
371
    for is_sparse in (False, True):
372
        for is_parallel in (False,):
373
            inject_test_method(target, is_sparse, is_parallel)
A
arlesniak 已提交
374 375
inject_test_method("cpu", False, False, True)
inject_test_method("cpu", False, False, True, True)
Y
Yang Yu 已提交
376 377 378

if __name__ == '__main__':
    unittest.main()