reducer.cc 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18 19 20 21 22 23 24 25 26
#include <iostream>

#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/string/string_helper.h"

#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"

#include "paddle/fluid/imperative/parallel_context.h"

27 28 29
namespace paddle {
namespace imperative {

30
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
31
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
32 33 34 35 36 37 38 39 40
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
  framework::Tensor *tensor =
      is_sparse_
          ? sparse_contents_->GetMutable<framework::SelectedRows>()
                ->mutable_value()
          : dense_contents_.GetMutable<framework::LoDTensor>();

  if (platform::is_gpu_place(tensor->place())) {
41
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
42 43 44
    DivNRanks(tensor, nranks, context);
#endif
  } else if (platform::is_cpu_place(tensor->place())) {
45 46
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
47 48 49
    framework::VisitDataTypeSmall(
        dtype_, DivNRanksForAllReduce<platform::CPUDeviceContext>(
                    tensor, nranks, context));
50
    VLOG(4) << "after div 2" << *tensor;
51 52 53 54 55 56 57
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
  }
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
100
    case framework::proto::VarType::FP16:
101 102
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
103 104
      break;
    case framework::proto::VarType::FP32:
105 106
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
107 108
      break;
    case framework::proto::VarType::FP64:
109 110
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
111 112 113 114 115
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
116
          framework::DataTypeToString(type)));
117 118 119 120
  }
}

// context is used to select the stream for split
121 122 123 124 125 126
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
127
    case framework::proto::VarType::FP16:
128 129
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
130 131
      break;
    case framework::proto::VarType::FP32:
132 133
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
134 135
      break;
    case framework::proto::VarType::FP64:
136 137
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
138 139 140 141 142
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
143 144 145 146
          framework::DataTypeToString(type)));
  }
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

210 211 212
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
213
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
214 215 216 217 218 219 220
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
221 222 223 224 225 226 227 228 229 230
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
231 232 233 234 235 236 237 238 239 240 241 242 243 244
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
245
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
246 247 248 249 250 251 252
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
253 254 255 256 257 258 259 260 261 262
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
263 264 265 266 267 268 269 270
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
271 272 273 274 275
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
276
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

292 293 294
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
295
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
296 297
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
298 299 300
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
301
      parallel_ctx_(parallel_ctx),
302
      group_size_limits_(group_size_limits),
303
      find_unused_vars_each_step_(find_unused_vars) {
304
  VLOG(3) << "Start construct the Reducer ...";
305
  nrings_ = parallel_ctx->GetNRings();
306
  nranks_ = parallel_ctx->GetNRanks();
307 308 309 310
#ifdef PADDLE_WITH_XPU_BKCL
  comm_pool_.reset(new ::ThreadPool(1));
  comm_op_count_ = 0;
#endif
311 312
  // initialize groups
  InitializeGroups(group_indices);
313 314
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
315
    auto var = vars_[global_var_index];
316 317
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
318
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
319
  }
320 321 322 323 324 325

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
326 327
}

328
void Reducer::InitializeDenseGroups(
329 330 331 332 333
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
334
    const auto &var_name = var->Name();
335 336
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
337
                          "Tensor %s's GRAD must be LoDTensor, but received "
338 339 340 341 342 343
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
344
                          "Tensor %s is not initialized.", var_name));
345
    const auto size = lod_tensor->numel();
346 347
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
348
                     "The number of tensor %s's elements is 0.", var_name));
349 350 351 352
    all_length += size;

    p_group->length_.push_back(size);

353 354 355
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

356
    // check the dtype and place, it must be same.
357 358
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
377
  p_group->all_length_ = all_length;
378 379 380 381 382
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
383
// Then specify the actual memory in MarkDenseVarReady.
384 385 386 387 388 389
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
390 391
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
392 393 394 395 396 397 398

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
399
            "The number of group[%d]'s elements is 0.", group_index));
400 401 402 403 404 405 406 407 408 409 410
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
411
      InitializeDenseGroups(variable_indices_, &group);
412 413 414
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
      tensor->Resize(framework::make_ddim({group.all_length_}))
          .mutable_data(place_, group.dtype_);
415
    }
416 417 418

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
419
    for (const auto var_index : variable_indices_) {
420 421 422 423 424 425
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
426
    groups_.emplace_back(std::move(group));
427
    // Debug Message For Reducer
428
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
429 430 431
  }
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

463
void Reducer::TraverseBackwardGraph(
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
526
}
527

528 529 530 531 532
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  VLOG(3) << "after forward, then reset count for backward.";
533
  grad_need_hooks_ = true;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
      groups_need_finalize_, false,
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
571 572 573 574 575 576 577 578
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
579 580 581
  }

  if (unused_vars_.size() == vars_.size()) {
582 583 584 585 586 587
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
588 589 590 591 592
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
593
// MarkDenseVarReady. Find the position of the corresponding group
594 595 596 597 598
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
599
void Reducer::AddDistHook(size_t var_index) {
600 601 602 603 604 605
  PADDLE_ENFORCE_LT(var_index, variable_locators_.size(),
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
                        variable_locators_.size(), var_index));

606 607 608 609 610
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

611 612 613
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
614

615 616
  local_used_vars_[var_index] = 1;

617
  // rebuild group when find_unused_vars_each_step_ is false
618
  if (NeedRebuildGroup()) {
619 620 621
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
622

623
  if (!has_marked_unused_vars_) {
624 625 626 627 628 629
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

630 631
  MarkVarReady(var_index, true);
}
632

633
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
634 635
  groups_need_finalize_ = true;

636
  const auto &var_locator = variable_locators_[var_index];
637
  const auto group_index = var_locator.group_index;
638
  auto &group = groups_[group_index];
639

640 641 642 643
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
644 645 646
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
        var_index, vars_[var_index]->GradVarBase()->Name());

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, false,
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, true,
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

674 675
  if (!group.is_sparse_) {
    // process dense group
676 677
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
678
    auto &group_tensor = group.dense_tensors_[inside_group_index];
679

680
    if (is_used_var) {
681 682
      auto var_base = vars_[var_index]->GradVarBase();
      auto tensor = var_base->MutableVar()->GetMutable<framework::LoDTensor>();
683 684
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
685
    } else {
686 687
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
688 689 690
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(place_, group.dtype_);
691 692
      }

693
#ifdef PADDLE_WITH_XPU_BKCL
694 695 696 697
      if (platform::is_xpu_place(group_tensor.place())) {
        // TODO(liuyuhui) support XPU set constant
        VLOG(3) << "XPU doesn't support set_constant";
      }
698
#else
699 700 701 702 703
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
        auto tensor =
            var_base->MutableVar()->GetMutable<framework::LoDTensor>();
704 705
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
706 707
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
708 709
        operators::math::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
710
#endif
711 712 713
    }
  } else {
    // process sparse group
714 715 716 717 718 719 720 721 722 723
    PADDLE_ENFORCE_EQ(
        HasGrad(var_index), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
            var_index, vars_[var_index]->Name()));
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
        var_base->Var().IsType<framework::SelectedRows>(), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
            var_index, vars_[var_index]->Name()));

    group.sparse_contents_ = var_base->MutableVar();
740
  }
741

742 743 744 745 746 747 748 749 750 751
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

752 753
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as same as multi gpus card trainging.
754
void Reducer::MarkGroupReady(size_t group_index) {
755 756 757 758 759 760 761 762
  PADDLE_ENFORCE_GE(
      group_index, next_group_,
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
          next_group_, group_index));

763
  if (group_index > next_group_) {
764
    VLOG(3) << "It will adjust the order of group in next batch automatically";
765 766 767 768 769
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
770 771
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
772 773 774 775 776 777 778

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
779 780 781 782 783 784 785 786
#ifdef PADDLE_WITH_XPU_BKCL
    {
      std::lock_guard<std::mutex> lock(mutex_);
      comm_op_count_ += 1;  // lock
    }
    // TODO(liuyuhui): Add try catch to deal with exception later,
    // otherwise the main thread will continue to run when an exception is
    // thrown in comm_pool_.
787 788
    auto next_group = next_group_;
    comm_pool_->enqueue([this, run_order, next_group, &group] {
789 790
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place_).device;
      platform::SetXPUDeviceId(dev_id);
791
      FusedAllReduceSchedule(run_order, group, next_group);
792 793 794 795
      {
        std::lock_guard<std::mutex> lock(mutex_);
        comm_op_count_ -= 1;  // lock
        cv_.notify_all();
796
      }
797
    });
798 799
#elif defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) || \
    defined(PADDLE_WITH_GLOO)
800
    FusedAllReduceSchedule(run_order, group, next_group_);
801 802
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
803
        "Not compiled with BKCL or NCCL or GLOO."));
804 805 806 807
#endif
  }
}

808 809 810 811 812
void Reducer::FusedAllReduceSchedule(const int run_order, Group &group,
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
813
  if (group.is_sparse_) {
814 815 816 817 818
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
    parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                     group.sparse_contents_, run_order, false);
819
  } else {
820 821
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
822 823
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
824
    group.ConcatTensors(dev_context);
825

826
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
827 828
// default stream for communicating, so there exist some problems in
// synchronization. And need to add a WaitComm there.
829 830
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as multi gpus card trainging.
831
#ifdef PADDLE_WITH_XPU_BKCL
832 833 834
    if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
      parallel_ctx_->WaitComm(run_order);
    }
835 836
#endif

837
    group.DivNRanks(dev_context, nranks_);
838 839 840
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
841

842
    // Select communication stream to split tensors
843
    // group.dense_contents_ ---> group.dense_tensors
844
    group.SplitTensors(dev_context);
845 846 847
  }
}

848
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
849 850 851 852 853 854 855 856 857
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
858 859 860 861 862 863 864 865 866 867 868 869
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
  auto *global_used_tensor =
      global_used_vars_.GetMutable<framework::LoDTensor>();
  framework::TensorFromVector<int>(local_used_vars_, *dev_ctx,
                                   global_used_tensor);
  parallel_ctx_->AllReduceByStream(global_used_vars_, &global_used_vars_, 0,
                                   true);
  framework::TensorToVector<int>(*global_used_tensor, *dev_ctx,
                                 &local_used_vars_);

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
          dest_var_base->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
920 921 922 923
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

      // 4. set grad tensor
      auto *dest_grad_tensor =
          grad_var_base_tmp->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      TensorCopy(src_tensor, place_, *dev_ctx, dest_grad_tensor);
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
  if (var.IsType<framework::LoDTensor>()) {
    if (var.Get<framework::LoDTensor>().IsInitialized()) {
      return true;
    }
  } else if (var.IsType<framework::SelectedRows>()) {
    if (var.Get<framework::SelectedRows>().value().IsInitialized()) {
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

957
void Reducer::FinalizeBackward() {
958
  groups_need_finalize_ = false;
959
  grad_need_hooks_ = false;
960 961 962 963 964 965
#ifdef PADDLE_WITH_XPU_BKCL
  {
    std::unique_lock<std::mutex> lock(mutex_);
    cv_.wait(lock, [&] { return comm_op_count_ == 0; });
  }
#endif
966

967 968
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
969
    parallel_ctx_->WaitComm(i);
970 971
  }

972
  if (NeedRebuildGroup()) {
973 974 975 976 977
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
978

979
  if (find_unused_vars_each_step_) {
980
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
981 982
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_GLOO)
983 984 985 986 987 988 989 990 991
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
992 993 994 995 996 997 998 999 1000 1001 1002 1003
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1004 1005
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1006 1007 1008 1009 1010
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1040 1041 1042 1043 1044 1045 1046

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1047
      // we keep sparse var a single group
1048
      res.push_back({tensor_real_index});
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1065
    group_info.first.push_back(tensor_real_index);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1096 1097 1098 1099 1100 1101
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1102 1103 1104 1105 1106 1107
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle