reducer.cc 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#endif

#include "paddle/fluid/imperative/parallel_context.h"

40 41 42 43
namespace paddle {
namespace imperative {

#if defined(PADDLE_WITH_NCCL)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
86
    case framework::proto::VarType::FP16:
87 88
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
89 90
      break;
    case framework::proto::VarType::FP32:
91 92
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
93 94
      break;
    case framework::proto::VarType::FP64:
95 96
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
97 98 99 100 101
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
102
          framework::DataTypeToString(type)));
103 104 105 106
  }
}

// context is used to select the stream for split
107 108 109 110 111 112
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
113
    case framework::proto::VarType::FP16:
114 115
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
116 117
      break;
    case framework::proto::VarType::FP32:
118 119
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
120 121
      break;
    case framework::proto::VarType::FP64:
122 123
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
124 125 126 127 128
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
          framework::DataTypeToString(type)));
  }
}

void Group::ConcatTensors(const platform::DeviceContext &context) {
  VLOG(3) << "Before concat, set output tensor size is " << all_length_;
  auto tensor = dense_contents_.GetMutable<framework::LoDTensor>();
  tensor->Resize(framework::make_ddim({all_length_}))
      .mutable_data(context.GetPlace(), dtype_);

  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_NCCL
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_NCCL
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
179 180 181 182 183
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
184
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

200 201 202
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
203
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
204 205
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
206 207 208
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
209
      parallel_ctx_(parallel_ctx),
210 211
      group_size_limits_(group_size_limits),
      find_unused_vars_(find_unused_vars) {
212
  VLOG(3) << "Start construct the Reducer ...";
213
  nrings_ = parallel_ctx->GetNRings();
214 215
  // initialize groups
  InitializeGroups(group_indices);
216 217
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
218 219
    auto var = vars_[global_var_index];
    var->SharedVar()->AddGradVarLeafBackwardHook(
220 221
        std::unique_ptr<LambdaGradAccumulatorPostHook>(
            new LambdaGradAccumulatorPostHook([=](VariableWrapper *grad) {
222
              this->AddDistHook(global_var_index);
223
            })));
224
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
225 226 227
  }
}

228
void Reducer::InitializeDenseGroups(
229 230 231 232 233 234 235 236
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
    const auto var_name = var->Name();
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
237
                          "Tensor %s's GRAD must be LoDTensor, but received "
238 239 240 241 242 243
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
244
                          "Tensor %s is not initialized.", var_name));
245 246 247
    auto size = lod_tensor->numel();
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
248
                     "The number of tensor %s's elements is 0.", var_name));
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    all_length += size;

    p_group->length_.push_back(size);

    // check the dtype and place, it must be same.
    auto dtype = var->DataType();
    auto place = var->Place();
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
279
// Then specify the actual memory in MarkDenseVarReady.
280 281 282 283 284 285
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
286 287
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
288 289 290 291 292 293 294

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
295
            "The number of group[%d]'s elements is 0.", group_index));
296 297 298 299 300 301 302 303 304 305 306
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
307
      InitializeDenseGroups(variable_indices_, &group);
308
    }
309 310 311

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
312
    for (const auto var_index : variable_indices_) {
313 314 315 316 317 318
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
319
    groups_.emplace_back(std::move(group));
320 321 322
    // Debug Message For Reducer
    VLOG(3) << "The Group[" << group_index << "]:";
    VLOG(3) << groups_.back();
323 324 325
  }
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    for (auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
    }

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

361 362
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
363 364
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
365 366 367 368
  VLOG(3) << "start reseting count..";
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
369 370 371 372
    group.all_length_ = 0;
    group.dense_tensors_.clear();
    group.dense_tensors_.reserve(group.pending_);
    group.sparse_contents_ = nullptr;
373
  });
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  PADDLE_ENFORCE_EQ(
      all_group_ready_, false,
      platform::errors::PreconditionNotMet(
          "Please note that all ``forward`` outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;
  if (!find_unused_vars_) {
    return;
  }

  // TODO(shenliang03) "find_unused_vars" interface will be exposed in the
  // future to handle control flow to process unused parameters
  find_unused_vars_ = false;

  unused_vars_.clear();
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
458 459 460 461 462
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
463
// MarkDenseVarReady. Find the position of the corresponding group
464 465 466 467 468
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
469 470 471 472 473 474 475 476 477 478 479 480 481 482
void Reducer::AddDistHook(size_t var_index) {
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (auto unused_index : unused_vars_) {
      if (NeedRebuildGroup()) {
        rebuild_vars_.push_back(vars_[unused_index]);
        rebuild_var_indices_.push_back(unused_index);
      }
      MarkVarReady(unused_index, false);
    }
  }
483

484
  if (NeedRebuildGroup()) {
485 486 487
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
488 489
  MarkVarReady(var_index, true);
}
490

491 492 493 494 495
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
  all_group_ready_ = true;
  const auto &var_locator = variable_locators_[var_index];
  auto group_index = var_locator.group_index;
  auto &group = groups_[group_index];
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  if (is_used_var) {
    auto var_warpper = vars_[var_index]->GradVarBase()->SharedVar();
    if (!group.is_sparse_) {
      auto grad = var_warpper->MutableVar();
      auto inside_group_index = var_locator.inside_group_index;
      auto length = group.length_[inside_group_index];

      auto tensor = grad->GetMutable<framework::LoDTensor>();
      framework::Tensor tmp;
      tmp.ShareDataWith(*tensor).Resize({static_cast<int64_t>(length)});
      group.dense_tensors_.push_back(std::move(tmp));
      group.all_length_ += length;
    } else {
      group.sparse_contents_ = var_warpper->MutableVar();
    }
  }
513 514 515 516 517 518 519 520 521 522 523 524
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

void Reducer::MarkGroupReady(size_t group_index) {
  if (group_index > next_group_) {
525
    VLOG(3) << "It will adjust the order of group in next batch automatically";
526 527 528 529 530 531
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    auto &group = groups_[next_group_];
532
    int run_order = next_group_ % nrings_;
533 534 535 536 537 538 539 540

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);

541
    if (group.is_sparse_) {
542 543 544 545 546 547 548 549 550
      if (group.sparse_contents_ != nullptr) {
        VLOG(3) << "sparse group [" << next_group_
                << "] start allreduce in ring[" << run_order << "]";
        parallel_ctx_->AllReduceByStream(
            *group.sparse_contents_, group.sparse_contents_, run_order, false);
      } else {
        VLOG(3) << "The sparse group[" << next_group_
                << "] has no var to allreduce";
      }
551
    } else {
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      if (!group.dense_tensors_.empty()) {
        VLOG(3) << "dense group [" << next_group_
                << "] start allreduce in ring[" << run_order << "]";
        // Select common commstream to concat tensors
        // group.dense_tensors ---> group.dense_contents_
        group.ConcatTensors(*parallel_ctx_->GetDeviceContext(run_order));

        // Start allreduce
        parallel_ctx_->AllReduceByStream(
            group.dense_contents_, &(group.dense_contents_), run_order, false);

        // Select common commstream to split tensors
        // group.dense_contents_ ---> group.dense_tensors
        group.SplitTensors(*parallel_ctx_->GetDeviceContext(run_order));
      } else {
        VLOG(3) << "The dense group[" << next_group_
                << "] has no var to allreduce";
      }
570 571 572 573
    }
  }
}

574
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
575 576 577 578 579 580 581 582 583
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
584 585 586 587 588 589 590 591 592 593 594 595
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

596
void Reducer::FinalizeBackward() {
597
  all_group_ready_ = false;
598 599
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
600
    parallel_ctx_->WaitComm(i);
601 602
  }

603
  if (NeedRebuildGroup()) {
604 605 606 607 608
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
609

610 611 612 613 614 615 616 617 618 619 620 621 622
  VLOG(3) << "In the batch, Reducer is finished...";
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
623 624
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
625 626 627 628 629
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
645 646 647 648 649 650 651 652 653 654 655 656 657 658
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
659 660 661 662 663 664 665

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
666
      // we keep sparse var a single group
667
      res.push_back({tensor_real_index});
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
684
    group_info.first.push_back(tensor_real_index);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
715 716 717 718 719 720
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
721 722 723 724 725 726
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle