reducer.cc 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

namespace paddle {
namespace imperative {

#if defined(PADDLE_WITH_NCCL)
std::shared_ptr<Reducer> Reducer::s_instance_ = NULL;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// context is used to select the stream for concat
void Group::ConcatTensors(const platform::CUDADeviceContext &context) {
  switch (dtype_) {
    case framework::proto::VarType::FP16:
      ConcatTensorsForAllReduce<platform::float16>(context, dense_tensors_,
                                                   &dense_contents_);
      break;
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<float>(context, dense_tensors_,
                                       &dense_contents_);
      break;
    case framework::proto::VarType::FP64:
      ConcatTensorsForAllReduce<double>(context, dense_tensors_,
                                        &dense_contents_);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(dtype_)));
  }
}

// context is used to select the stream for split
void Group::SplitTensors(const platform::CUDADeviceContext &context) {
  switch (dtype_) {
    case framework::proto::VarType::FP16:
      SplitTensorsForAllReduce<platform::float16>(context, &dense_contents_,
                                                  &dense_tensors_);
      break;
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<float>(context, &dense_contents_,
                                      &dense_tensors_);
      break;
    case framework::proto::VarType::FP64:
      SplitTensorsForAllReduce<double>(context, &dense_contents_,
                                       &dense_tensors_);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(dtype_)));
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
  out << "numul: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

87 88 89
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
90 91
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
                 const std::vector<size_t> &group_size_limits)
92 93 94
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
95 96
      parallel_ctx_(parallel_ctx),
      group_size_limits_(group_size_limits) {
97 98 99
  VLOG(3) << "Start construct the Reducer ...";
  // initialize groups
  InitializeGroups(group_indices);
100 101 102 103 104 105 106
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
    vars_[global_var_index]->SharedVar()->AddGradVarLeafBackwardHook(
        std::unique_ptr<LambdaGradAccumulatorPostHook>(
            new LambdaGradAccumulatorPostHook([=](VariableWrapper *grad) {
              this->AddDistHook(grad, global_var_index);
            })));
107
  }
108
  // create streams
109 110 111 112
  compute_stream_ = static_cast<platform::CUDADeviceContext *>(
                        platform::DeviceContextPool::Instance().Get(place_))
                        ->stream();
  comm_stream_ = platform::NCCLCommContext::Instance().Get(0, place_)->stream();
113 114
  // create events
  CreateGroupEvents(group_indices.size());
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  comm_enent_ = platform::CudaEventResourcePool::Instance().New(
      BOOST_GET_CONST(platform::CUDAPlace, place_).device);

  std::call_once(once_flag_, []() {
    std::atexit([]() { Reducer::GetInstance()->ReleaseReducer(); });
  });
}

void Reducer::ReleaseReducer() {
  for (auto &event : events_) {
    event.reset();
  }
  comm_enent_.reset();
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143
void Reducer::CreateGroupEvents(int group_num) {
  // release old events
  for (auto &event : events_) {
    event.reset();
  }
  events_.clear();
  events_.resize(group_num);
  for (auto &event : events_) {
    event = platform::CudaEventResourcePool::Instance().New(
        BOOST_GET_CONST(platform::CUDAPlace, place_).device);
  }
}

void Reducer::InitializeDenseGroups(
144 145 146 147 148 149 150 151
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
    const auto var_name = var->Name();
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
152
                          "Tensor %s's GRAD must be LoDTensor, but received "
153 154 155 156 157 158
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
159
                          "Tensor %s is not initialized.", var_name));
160 161 162
    auto size = lod_tensor->numel();
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
163
                     "The number of tensor %s's elements is 0.", var_name));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    all_length += size;

    p_group->length_.push_back(size);
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

    // check the dtype and place, it must be same.
    auto dtype = var->DataType();
    auto place = var->Place();
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
191
  p_group->all_length_ = all_length;
192 193 194 195 196 197 198 199 200 201 202 203
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
// Then specify the actual memory in MarkVariableReady.
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
204 205
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
206 207 208 209 210 211 212

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
213
            "The number of group[%d]'s elements is 0.", group_index));
214 215 216 217 218 219 220 221 222 223 224 225
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.sparse_contents_ = first_varbase->MutableGradVar();
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
226
      InitializeDenseGroups(variable_indices_, &group);
227 228
      // Alloc the continuous space
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
229
      tensor->Resize(framework::make_ddim({group.all_length_}))
230 231
          .mutable_data(place_, group.dtype_);
    }
232 233 234 235 236 237 238 239 240 241

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : group_indices[group_index]) {
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
242
    groups_.emplace_back(std::move(group));
243 244 245 246

    // Debug Message For Reducer
    VLOG(3) << "The Group[" << group_index << "]:";
    VLOG(3) << groups_.back();
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  }
}

// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward() {
  VLOG(3) << "start reseting count..";
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
  });
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
// MarkVariableReady. Find the position of the corresponding group
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
269 270 271
void Reducer::AddDistHook(VariableWrapper *var_warpper, size_t var_index) {
  const auto &var_locator = variable_locators_[var_index];
  auto group_index = var_locator.group_index;
272 273
  auto &group = groups_[group_index];

274 275 276 277 278
  if (!has_rebuilt_group_) {
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }

279 280 281 282 283 284 285 286 287 288 289 290 291 292
  if (!group.is_sparse_) {
    // Only dense_contents_ need memory copy
    MarkVariableReady(var_index, var_warpper);
  }
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

293
void Reducer::MarkVariableReady(size_t var_index,
294
                                VariableWrapper *var_warpper) {
295 296 297
  const auto &var_locator = variable_locators_[var_index];
  auto group_index = var_locator.group_index;
  auto inside_group_index = var_locator.inside_group_index;
298
  auto &group = groups_[group_index];
299
  auto length = group.length_[inside_group_index];
300 301

  auto tensor = var_warpper->MutableVar()->GetMutable<framework::LoDTensor>();
302
  group.dense_tensors_[inside_group_index].ShareDataWith(*tensor).Resize(
303 304 305 306 307
      {static_cast<int64_t>(length)});
}

void Reducer::MarkGroupReady(size_t group_index) {
  if (group_index > next_group_) {
308
    VLOG(3) << "It will adjust the order of group in next batch automatically";
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    return;
  }

  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaEventRecord(events_[group_index].get(), compute_stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaStreamWaitEvent(comm_stream_, events_[group_index].get(), 0));

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    auto &group = groups_[next_group_];
    if (group.is_sparse_) {
      VLOG(3) << "sparse group [" << next_group_ << "] start allreduce...";
      parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                       group.sparse_contents_, 0, false);
    } else {
      VLOG(3) << "dense group [" << next_group_ << "] start allreduce...";
      // Select common commstream to concat tensors
      // group.dense_tensors ---> group.dense_contents_
      group.ConcatTensors(*parallel_ctx_->GetDeviceContext(0));

      // Start allreduce
      parallel_ctx_->AllReduceByStream(group.dense_contents_,
                                       &(group.dense_contents_), 0, false);
      // Select common commstream to split tensors
      // group.dense_contents_ ---> group.dense_tensors
      group.SplitTensors(*parallel_ctx_->GetDeviceContext(0));
    }
  }
}

340 341 342 343 344 345 346 347 348 349 350 351 352
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

353 354 355 356
void Reducer::FinalizeBackward() {
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(comm_enent_.get(), comm_stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaStreamWaitEvent(compute_stream_, comm_enent_.get(), 0));
357 358 359 360 361 362 363 364
  if (!has_rebuilt_group_) {
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    auto rebuild_group_number = rebuild_group_indices.size();
    group_indices_ = std::move(rebuild_group_indices);
    CreateGroupEvents(rebuild_group_number);
    InitializeGroups(group_indices_);
  }
365 366 367 368 369 370 371 372 373 374 375 376 377
  VLOG(3) << "In the batch, Reducer is finished...";
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
378 379
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
380 381 382 383 384
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
400 401 402 403 404 405 406 407 408 409 410 411 412 413
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
414 415 416 417 418 419 420

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
421
      // we keep sparse var a single group
422
      res.push_back({tensor_real_index});
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
439
    group_info.first.push_back(tensor_real_index);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
470 471 472 473 474 475
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
476 477 478 479 480 481
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle