pooling.cu 71.2 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/pooling.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduoZH 已提交
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

25
template <typename PoolProcess, typename T>
26
__global__ void KernelPool2D(const int nthreads, const T* input_data,
C
chengduoZH 已提交
27 28 29 30 31 32
                             const int channels, const int input_height,
                             const int input_width, const int output_height,
                             const int output_width, const int ksize_height,
                             const int ksize_width, const int stride_height,
                             const int stride_width, const int padding_height,
                             const int padding_width, PoolProcess pool_process,
33 34
                             bool exclusive, bool adaptive, T* output_data,
                             bool channel_last = false) {
35 36
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
37 38 39 40 41 42 43 44 45 46 47 48
    int pw, ph, c, batch_idx;
    if (!channel_last) { /*NCHW*/
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      c = (index / output_width / output_height) % channels;
      batch_idx = index / output_width / output_height / channels;
    } else { /*NHWC*/
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      batch_idx = index / channels / output_width / output_height;
    }
49

50 51
    int hstart, hend;
    int wstart, wend;
D
dengkaipeng 已提交
52
    if (adaptive) {
D
dengkaipeng 已提交
53 54
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
55

D
dengkaipeng 已提交
56 57
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
58
    } else {
59 60
      hstart = ph * stride_height - padding_height;
      hend = min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
61 62
      hstart = max(hstart, 0);

63 64
      wstart = pw * stride_width - padding_width;
      wend = min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
65 66
      wstart = max(wstart, 0);
    }
67

68 69 70 71 72
    if (!channel_last) {
      input_data += (batch_idx * channels + c) * input_height * input_width;
    } else {
      input_data += batch_idx * input_height * input_width * channels;
    }
73
    T ele = pool_process.initial();
74 75
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
76 77 78
        auto input_idx = channel_last ? (h * input_width + w) * channels + c
                                      : h * input_width + w;
        pool_process.compute(input_data[input_idx], &ele);
79 80
      }
    }
D
dengkaipeng 已提交
81 82
    int pool_size = (exclusive || adaptive) ? (hend - hstart) * (wend - wstart)
                                            : ksize_height * ksize_width;
C
chengduo 已提交
83
    pool_process.finalize(static_cast<T>(pool_size), &ele);
84 85 86 87
    output_data[index] = ele;
  }
}
template <typename PoolProcess, typename T>
88
__global__ void KernelPool2DGrad(
89
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
90 91 92 93
    const T* output_grad, const int channels, const int input_height,
    const int input_width, const int output_height, const int output_width,
    const int ksize_height, const int ksize_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
94 95
    PoolProcess pool_process, bool exclusive, bool adaptive, T* input_grad,
    bool channel_last = false) {
96 97
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
98 99 100 101 102 103 104 105 106 107 108 109 110
    int w_offset, h_offset, offsetC, batch_idx;
    if (!channel_last) { /* NCHW */
      w_offset = index % input_width + padding_width;
      h_offset = (index / input_width) % input_height + padding_height;
      offsetC = (index / input_width / input_height) % channels;
      batch_idx = index / input_width / input_height / channels;
    } else { /* NHWC */
      offsetC = index % channels;
      w_offset = (index / channels) % input_width + padding_width;
      h_offset =
          (index / channels / input_width) % input_height + padding_height;
      batch_idx = index / channels / input_width / input_height;
    }
111

112 113 114
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
115 116 117 118 119
      phstart = AdaptStartIndex(h_offset, output_height, input_height);
      phend = AdaptEndIndex(h_offset, output_height, input_height);

      pwstart = AdaptStartIndex(w_offset, output_width, input_width);
      pwend = AdaptEndIndex(w_offset, output_width, input_width);
120
    } else {
D
dengkaipeng 已提交
121
      phstart = (h_offset < ksize_height)
122
                    ? 0
D
dengkaipeng 已提交
123 124
                    : (h_offset - ksize_height) / stride_height + 1;
      pwstart = (w_offset < ksize_width)
125
                    ? 0
D
dengkaipeng 已提交
126 127 128
                    : (w_offset - ksize_width) / stride_width + 1;
      phend = min(h_offset / stride_height + 1, output_height);
      pwend = min(w_offset / stride_width + 1, output_width);
129
    }
130
    T gradient = static_cast<T>(0.0);
131
    T input = input_data[index];
132 133 134 135 136 137 138 139 140 141 142 143

    int output_stride;
    if (!channel_last) {
      output_stride =
          (batch_idx * channels + offsetC) * output_height * output_width;
    } else {
      output_stride = batch_idx * output_height * output_width * channels;
    }

    output_data += output_stride;
    output_grad += output_stride;

144 145
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        int pool_size;
        if (adaptive) {
          pool_size = static_cast<int>(ceil(static_cast<double>(input_height) /
                                            ksize_height)) *
                      static_cast<int>(
                          ceil(static_cast<double>(input_width) / ksize_width));
        } else {
          int hstart = ph * stride_height - padding_height;
          int wstart = pw * stride_width - padding_width;
          int hend = min(hstart + ksize_height, input_height);
          int wend = min(wstart + ksize_width, input_width);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          pool_size = exclusive ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
        }
162

163 164 165
        int output_sub_idx = channel_last
                                 ? (ph * output_width + pw) * channels + offsetC
                                 : ph * output_width + pw;
166
        pool_process.compute(input, output_data[output_sub_idx],
C
chengduo 已提交
167 168
                             output_grad[output_sub_idx],
                             static_cast<T>(1.0 / pool_size), &gradient);
169 170 171 172 173 174
      }
    }
    input_grad[index] = gradient;
  }
}

175
template <typename T>
176
__global__ void KernelMaxPool2DGrad(
177
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
178 179 180 181
    const T* output_grad, const int channels, const int input_height,
    const int input_width, const int output_height, const int output_width,
    const int ksize_height, const int ksize_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
182
    T* input_grad, bool channel_last = false) {
183 184
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
185 186 187 188 189 190 191 192 193 194 195 196
    int pw, ph, c, batch_idx;
    if (!channel_last) { /* NCHW */
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      c = (index / output_width / output_height) % channels;
      batch_idx = index / output_width / output_height / channels;
    } else { /* NHWC */
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      batch_idx = index / channels / output_width / output_height;
    }
197 198 199 200 201 202 203 204
    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

205 206 207 208 209 210 211 212
    int input_stride;
    if (!channel_last) {
      input_stride = (batch_idx * channels + c) * input_height * input_width;
    } else {
      input_stride = batch_idx * input_height * input_width * channels;
    }
    input_data += input_stride;
    input_grad += input_stride;
213 214 215 216 217 218

    T ele = output_data[index];
    int maxIndex = -1;
    bool stop = false;
    for (int h = hstart; h < hend && !stop; ++h) {
      for (int w = wstart; w < wend && !stop; ++w) {
219 220 221 222
        int input_data_idx = channel_last ? (h * input_width + w) * channels + c
                                          : h * input_width + w;
        if (ele == input_data[input_data_idx]) {
          maxIndex = input_data_idx;
223 224 225 226 227 228 229
          stop = true;
        }
      }
    }

    if (maxIndex != -1) {
      // atomic add
C
chengduoZH 已提交
230
      platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
231 232 233 234
    }
  }
}

N
nhzlx 已提交
235 236 237 238 239
template <typename PoolProcess, typename T>
void Pool2dDirectCUDAFunctor<PoolProcess, T>::operator()(
    const T* input, const std::vector<int>& input_shape,
    const std::vector<int>& output_shape, const std::vector<int>& ksize,
    const std::vector<int>& strides, const std::vector<int>& paddings,
240 241
    bool exclusive, bool adaptive, T* output, gpuStream_t stream,
    PoolProcess pool_compute) {
N
nhzlx 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  const int batch_size = input_shape[0];
  const int input_channels = input_shape[1];
  const int input_height = input_shape[2];
  const int input_width = input_shape[3];
  const int output_channels = output_shape[1];
  const int output_height = output_shape[2];
  const int output_width = output_shape[3];
  const int ksize_height = ksize[0];
  const int ksize_width = ksize[1];
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];

  int nthreads = batch_size * output_channels * output_height * output_width;
  int blocks = (nthreads + 1024 - 1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocks, 1);

  KernelPool2D<PoolProcess, T><<<grid, threads, 0, stream>>>(
      nthreads, input, input_channels, input_height, input_width, output_height,
      output_width, ksize_height, ksize_width, stride_height, stride_width,
264
      padding_height, padding_width, pool_compute, exclusive, adaptive, output);
N
nhzlx 已提交
265 266
}

C
chengduoZH 已提交
267
/*
268 269 270 271 272 273
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
274
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
275
class Pool2dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
276
 public:
Q
QI JUN 已提交
277
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
278 279
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
280 281 282
                  const std::vector<int>& paddings, bool exclusive,
                  bool adaptive, framework::Tensor* output,
                  PoolProcess pool_process) {
283 284 285 286
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
287 288 289
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
290 291 292 293 294 295 296 297
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
298
    T* output_data = output->mutable_data<T>(context.GetPlace());
299 300 301 302 303 304

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
305
    KernelPool2D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
306 307
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
308
        stride_width, padding_height, padding_width, pool_process, exclusive,
309
        adaptive, output_data);
310
  }
311 312 313 314
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
315 316
                  const std::string data_format, bool exclusive, bool adaptive,
                  framework::Tensor* output, PoolProcess pool_process) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    bool channel_last = (data_format == "NHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output->dims()[3] : output->dims()[1];
    const int output_height =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_width =
        channel_last ? output->dims()[2] : output->dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool2D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
        stride_width, padding_height, padding_width, pool_process, exclusive,
        adaptive, output_data, channel_last);
  }
};
C
chengduoZH 已提交
355
/*
356 357 358 359 360 361
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
362
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
363
class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
364
 public:
Q
QI JUN 已提交
365
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
366
                  const framework::Tensor& input,
367
                  const framework::Tensor& output,
C
chengduo 已提交
368 369 370
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
371 372 373
                  const std::vector<int>& paddings, bool exclusive,
                  bool adaptive, framework::Tensor* input_grad,
                  PoolProcess pool_process) {
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
390
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
391 392 393 394 395 396

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
397
    KernelPool2DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
398 399 400
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
401
        pool_process, exclusive, adaptive, input_grad_data);
402
  }
403 404 405 406 407 408 409 410 411
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, bool exclusive, bool adaptive,
                  framework::Tensor* input_grad, PoolProcess pool_process) {
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();

    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool2DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        pool_process, exclusive, adaptive, input_grad_data, channel_last);
  }
452 453
};

C
chengduoZH 已提交
454
/*
455 456 457 458 459 460
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
461
template <typename T>
Q
QI JUN 已提交
462
class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
463
 public:
Q
QI JUN 已提交
464
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
465
                  const framework::Tensor& input,
466
                  const framework::Tensor& output,
C
chengduo 已提交
467 468 469 470
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
471
                  framework::Tensor* input_grad) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
489
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
490 491 492 493 494 495

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
496
    KernelMaxPool2DGrad<T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
497 498 499 500
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        input_grad_data);
501
  }
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxPool2DGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        input_grad_data, channel_last);
  }
547 548
};

N
nhzlx 已提交
549 550 551 552 553
template class Pool2dDirectCUDAFunctor<paddle::operators::math::MaxPool<float>,
                                       float>;
template class Pool2dDirectCUDAFunctor<paddle::operators::math::AvgPool<float>,
                                       float>;

Q
QI JUN 已提交
554 555
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, double>;
556 557
template class MaxPool2dGradFunctor<platform::CUDADeviceContext,
                                    paddle::platform::float16>;
C
chengduoZH 已提交
558

Q
QI JUN 已提交
559
template class Pool2dFunctor<platform::CUDADeviceContext,
560
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
561
template class Pool2dFunctor<platform::CUDADeviceContext,
562
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
563 564 565 566 567 568 569
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CUDADeviceContext,
570
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
571
template class Pool2dFunctor<platform::CUDADeviceContext,
572
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
573 574 575 576 577 578
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
template class Pool2dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;

597
template <typename PoolProcess, typename T>
598
__global__ void KernelPool3D(
599 600 601
    const int nthreads, const T* input_data, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
602
    const int ksize_depth, const int ksize_height, const int ksize_width,
603
    const int stride_depth, const int stride_height, const int stride_width,
604
    const int padding_depth, const int padding_height, const int padding_width,
605 606
    PoolProcess pool_process, bool exclusive, bool adaptive, T* output_data,
    bool channel_last = false) {
607
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
608
       index += blockDim.x * gridDim.x) {
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    int pw, ph, pd, c, batch_idx;
    if (!channel_last) {
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else {
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }
625 626 627 628 629

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
630 631
      dstart = AdaptStartIndex(pd, input_depth, output_depth);
      dend = AdaptEndIndex(pd, input_depth, output_depth);
632

D
dengkaipeng 已提交
633 634
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
635

D
dengkaipeng 已提交
636 637
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
638 639 640 641 642 643 644 645 646 647 648
    } else {
      dstart = pd * stride_depth - padding_depth;
      hstart = ph * stride_height - padding_height;
      wstart = pw * stride_width - padding_width;
      dend = min(dstart + ksize_depth, input_depth);
      hend = min(hstart + ksize_height, input_height);
      wend = min(wstart + ksize_width, input_width);
      dstart = max(dstart, 0);
      hstart = max(hstart, 0);
      wstart = max(wstart, 0);
    }
649 650 651 652 653 654 655 656 657 658 659

    int input_data_stride;
    if (!channel_last) { /* NCDHW */
      input_data_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else { /* NDHWC */
      input_data_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_data_stride;

660
    T ele = pool_process.initial();
661 662 663
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
664 665 666 667 668
          auto input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          pool_process.compute(input_data[input_data_idx], &ele);
669 670 671
        }
      }
    }
672
    int pool_size = (exclusive || adaptive)
673 674
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
675
    pool_process.finalize(static_cast<T>(pool_size), &ele);
676 677 678 679 680
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
681
__global__ void KernelPool3DGrad(
682
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
683 684 685 686 687 688
    const T* output_grad, const int channels, const int input_depth,
    const int input_height, const int input_width, const int output_depth,
    const int output_height, const int output_width, const int ksize_depth,
    const int ksize_height, const int ksize_width, const int stride_depth,
    const int stride_height, const int stride_width, const int padding_depth,
    const int padding_height, const int padding_width, PoolProcess pool_process,
689
    bool exclusive, bool adaptive, T* input_grad, bool channel_last = false) {
690
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
691
       index += blockDim.x * gridDim.x) {
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    int w_offset, h_offset, d_offset, offsetC, batch_idx;
    if (!channel_last) { /* "NCDHW" */
      w_offset = index % input_width + padding_width;
      h_offset = (index / input_width) % input_height + padding_height;
      d_offset =
          (index / input_width / input_height) % input_depth + padding_depth;
      offsetC = (index / input_width / input_height / input_depth) % channels;
      batch_idx = index / input_width / input_height / input_depth / channels;

    } else { /* "NDHWC" */
      offsetC = index % channels;
      w_offset = (index / channels) % input_width + padding_width;
      h_offset =
          (index / channels / input_width) % input_height + padding_height;
      d_offset = (index / channels / input_width / input_height) % input_depth +
                 padding_depth;
      batch_idx = index / channels / input_width / input_height / input_depth;
    }
710

711 712 713 714
    int pdstart, pdend;
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
715 716 717 718 719 720 721 722
      pdstart = AdaptStartIndex(d_offset, output_depth, input_depth);
      pdend = AdaptEndIndex(d_offset, output_depth, input_depth);

      phstart = AdaptStartIndex(h_offset, output_height, input_height);
      phend = AdaptEndIndex(h_offset, output_height, input_height);

      pwstart = AdaptStartIndex(w_offset, output_width, input_width);
      pwend = AdaptEndIndex(w_offset, output_width, input_width);
723
    } else {
D
dengkaipeng 已提交
724
      pdstart = (d_offset < ksize_depth)
725
                    ? 0
D
dengkaipeng 已提交
726 727
                    : (d_offset - ksize_depth) / stride_depth + 1;
      phstart = (h_offset < ksize_height)
728
                    ? 0
D
dengkaipeng 已提交
729 730
                    : (h_offset - ksize_height) / stride_height + 1;
      pwstart = (w_offset < ksize_width)
731
                    ? 0
D
dengkaipeng 已提交
732 733 734 735
                    : (w_offset - ksize_width) / stride_width + 1;
      pdend = min((d_offset) / stride_depth + 1, output_depth);
      phend = min((h_offset) / stride_height + 1, output_height);
      pwend = min((w_offset) / stride_width + 1, output_width);
736
    }
737

738
    T gradient = static_cast<T>(0.0);
739
    T input = input_data[index];
740 741 742 743 744 745 746 747 748 749 750

    int output_stride;
    if (!channel_last) {
      output_stride = (batch_idx * channels + offsetC) * output_depth *
                      output_height * output_width;
    } else {
      output_stride =
          batch_idx * output_depth * output_height * output_width * channels;
    }
    output_data += output_stride;
    output_grad += output_stride;
751 752 753 754 755

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
          int pool_size;
          if (adaptive) {
            pool_size =
                static_cast<int>(
                    ceil(static_cast<double>(input_depth) / ksize_depth)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_height) / ksize_height)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_width) / ksize_width));
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int hstart = ph * stride_height - padding_height;
            int wstart = pw * stride_width - padding_width;
            int dend = min(dstart + ksize_depth, input_depth);
            int hend = min(hstart + ksize_height, input_height);
            int wend = min(wstart + ksize_width, input_width);
            dstart = max(dstart, 0);
            hstart = max(hstart, 0);
            wstart = max(wstart, 0);
            pool_size =
                exclusive ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                          : ksize_depth * ksize_height * ksize_width;
          }
779 780 781 782 783 784 785

          int output_sub_idx =
              channel_last
                  ? ((pd * output_height + ph) * output_width + pw) * channels +
                        offsetC
                  : (pd * output_height + ph) * output_width + pw;

786
          pool_process.compute(input, output_data[output_sub_idx],
C
chengduo 已提交
787 788
                               output_grad[output_sub_idx],
                               static_cast<T>(1.0 / pool_size), &gradient);
789 790 791 792 793 794 795
        }
      }
    }
    input_grad[index] = gradient;
  }
}

796
template <typename T>
797
__global__ void KernelMaxPool3DGrad(
798
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
799 800 801 802 803
    const T* output_grad, const int channels, const int input_depth,
    const int input_height, const int input_width, const int output_depth,
    const int output_height, const int output_width, const int ksize_depth,
    const int ksize_height, const int ksize_width, const int stride_depth,
    const int stride_height, const int stride_width, const int padding_depth,
804 805
    const int padding_height, const int padding_width, T* input_grad,
    bool channel_last = false) {
806
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
807
       index += blockDim.x * gridDim.x) {
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    int pw, ph, pd, c, batch_idx;

    if (!channel_last) { /*NCDHW*/
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else { /*NDHWC*/
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }

826 827 828
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
829

830 831 832
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
833

834 835 836
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
837

838 839 840 841
    T ele = output_data[index];
    bool stop = false;
    int maxIdx = -1;

842 843 844 845 846 847 848 849 850 851
    int input_stride;
    if (!channel_last) {
      input_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else {
      input_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_stride;
    input_grad += input_stride;
852 853 854
    for (int d = dstart; d < dend && !stop; ++d) {
      for (int h = hstart; h < hend && !stop; ++h) {
        for (int w = wstart; w < wend && !stop; ++w) {
855 856 857 858 859
          int input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          if (ele == input_data[input_data_idx]) {
860
            stop = true;
861
            maxIdx = input_data_idx;
862 863 864 865 866 867
          }
        }
      }
    }
    if (maxIdx != -1) {
      // atomic add
C
chengduoZH 已提交
868
      platform::CudaAtomicAdd(input_grad + maxIdx, output_grad[index]);
869 870 871 872
    }
  }
}

C
chengduoZH 已提交
873
/*
874 875 876 877 878 879 880
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
881
template <typename PoolProcess, class T>
Q
QI JUN 已提交
882
class Pool3dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
883
 public:
Q
QI JUN 已提交
884
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
885 886
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
887 888 889
                  const std::vector<int>& paddings, bool exclusive,
                  bool adaptive, framework::Tensor* output,
                  PoolProcess pool_process) {
890 891 892 893 894
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
895 896 897 898
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
899 900 901 902 903 904 905 906 907 908 909
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
910
    T* output_data = output->mutable_data<T>(context.GetPlace());
911 912 913 914 915 916 917

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
918
    KernelPool3D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
919 920 921
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
922
        padding_depth, padding_height, padding_width, pool_process, exclusive,
923
        adaptive, output_data);
924
  }
925 926 927 928
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
929 930
                  const std::string data_format, bool exclusive, bool adaptive,
                  framework::Tensor* output, PoolProcess pool_process) {
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output->dims()[4] : output->dims()[1];
    const int output_depth =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_height =
        channel_last ? output->dims()[2] : output->dims()[3];
    const int output_width =
        channel_last ? output->dims()[3] : output->dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool3D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
        padding_depth, padding_height, padding_width, pool_process, exclusive,
        adaptive, output_data, channel_last);
  }
976 977
};

C
chengduoZH 已提交
978
/*
979 980 981 982 983 984 985
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
986
template <typename PoolProcess, class T>
Q
QI JUN 已提交
987
class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
988
 public:
Q
QI JUN 已提交
989
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
990
                  const framework::Tensor& input,
991
                  const framework::Tensor& output,
C
chengduo 已提交
992 993 994
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
995 996 997
                  const std::vector<int>& paddings, bool exclusive,
                  bool adaptive, framework::Tensor* input_grad,
                  PoolProcess pool_process) {
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
1020
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
1021

1022 1023
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
1024 1025 1026 1027
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1028
    KernelPool3DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1029 1030 1031 1032
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
1033
        padding_width, pool_process, exclusive, adaptive, input_grad_data);
1034
  }
1035 1036 1037 1038 1039 1040 1041 1042 1043
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, bool exclusive, bool adaptive,
                  framework::Tensor* input_grad, PoolProcess pool_process) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    bool channel_last = (data_format == "NDHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool3DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, pool_process, exclusive, adaptive, input_grad_data,
        channel_last);  // add channel_last
  }
1090 1091
};

C
chengduoZH 已提交
1092
/*
1093 1094 1095 1096 1097 1098 1099
 * tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
1100
template <class T>
Q
QI JUN 已提交
1101
class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
1102
 public:
Q
QI JUN 已提交
1103
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1104
                  const framework::Tensor& input,
1105
                  const framework::Tensor& output,
C
chengduo 已提交
1106 1107 1108 1109
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
1110
                  framework::Tensor* input_grad) {
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
1133
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
1134 1135 1136 1137 1138 1139 1140

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1141
    KernelMaxPool3DGrad<T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1142 1143 1144 1145 1146
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, input_grad_data);
1147
  }
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxPool3DGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, input_grad_data, channel_last);  // add channel_last
  }
1199 1200
};

Q
QI JUN 已提交
1201 1202
template class MaxPool3dGradFunctor<platform::CUDADeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CUDADeviceContext, double>;
1203 1204
template class MaxPool3dGradFunctor<platform::CUDADeviceContext,
                                    paddle::platform::float16>;
C
chengduoZH 已提交
1205

Q
QI JUN 已提交
1206
template class Pool3dFunctor<platform::CUDADeviceContext,
1207
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
1208
template class Pool3dFunctor<platform::CUDADeviceContext,
1209
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
1210 1211 1212 1213 1214 1215 1216
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CUDADeviceContext,
1217
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
1218
template class Pool3dFunctor<platform::CUDADeviceContext,
1219
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
1220 1221 1222 1223 1224 1225
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
template class Pool3dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;

C
chengduoZH 已提交
1244
template <typename T1, typename T2>
C
chengduoZH 已提交
1245
__global__ void KernelMaxPool2dWithIdx(
C
chengduoZH 已提交
1246
    const int nthreads, const T1* input_data, const int channels,
C
chengduoZH 已提交
1247 1248 1249
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
1250
    const int padding_width, bool adaptive, T1* output_data, T2* mask_data) {
C
chengduoZH 已提交
1251
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1252
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
1253 1254 1255 1256 1257
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

1258 1259 1260
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
1261 1262
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
C
chengduoZH 已提交
1263

D
dengkaipeng 已提交
1264 1265
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
1266 1267 1268 1269 1270 1271 1272 1273 1274
    } else {
      hstart = ph * stride_height - padding_height;
      hend = min(hstart + ksize_height, input_height);
      hstart = max(hstart, 0);

      wstart = pw * stride_width - padding_width;
      wend = min(wstart + ksize_width, input_width);
      wstart = max(wstart, 0);
    }
C
chengduoZH 已提交
1275 1276

    input_data += (batch_idx * channels + c) * input_height * input_width;
C
chengduoZH 已提交
1277
    T1 ele = -FLT_MAX;
C
chengduoZH 已提交
1278
    int max_index = -1;
C
chengduoZH 已提交
1279 1280
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
1281 1282 1283 1284
        int input_index = h * input_width + w;
        if (ele < input_data[input_index]) {
          max_index = input_index;
          ele = input_data[input_index];
C
chengduoZH 已提交
1285 1286 1287 1288
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
1289
    mask_data[index] = max_index;
C
chengduoZH 已提交
1290 1291 1292
  }
}

C
chengduoZH 已提交
1293
template <typename T1, typename T2>
C
chengduoZH 已提交
1294
__global__ void KernelMaxPool2DWithIdxGrad(
C
chengduoZH 已提交
1295
    const int nthreads, const T1* output_grad, const T2* mask_data,
C
chengduoZH 已提交
1296 1297 1298
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
1299 1300
    const int padding_height, const int padding_width, bool adaptive,
    T1* input_grad) {
C
chengduoZH 已提交
1301
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1302
       index += blockDim.x * gridDim.x) {
D
dengkaipeng 已提交
1303 1304
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
1305
    int offsetC = (index / input_width / input_height) % channels;
C
chengduoZH 已提交
1306 1307
    int batch_idx = index / input_width / input_height / channels;

1308 1309 1310
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
D
dengkaipeng 已提交
1311
      phstart = h_offset * output_height / input_height;
1312
      phend =
D
dengkaipeng 已提交
1313 1314 1315 1316
          min((h_offset + 1) * output_height / input_height + 1, output_height);
      pwstart = w_offset * output_width / input_width;
      pwend =
          min((w_offset + 1) * output_width / input_width + 1, output_width);
1317 1318
    } else {
      phstart =
D
dengkaipeng 已提交
1319
          (h_offset + padding_height < ksize_height)
1320
              ? 0
D
dengkaipeng 已提交
1321
              : (h_offset + padding_height - ksize_height) / stride_height + 1;
1322
      pwstart =
D
dengkaipeng 已提交
1323
          (w_offset + padding_width < ksize_width)
1324
              ? 0
D
dengkaipeng 已提交
1325
              : (w_offset + padding_width - ksize_width) / stride_width + 1;
1326
      phend =
D
dengkaipeng 已提交
1327 1328
          min((h_offset + padding_height) / stride_height + 1, output_height);
      pwend = min((w_offset + padding_width) / stride_width + 1, output_width);
1329
    }
C
chengduoZH 已提交
1330

C
chengduoZH 已提交
1331
    T1 gradient = 0;
D
dengkaipeng 已提交
1332
    int input_current_featuremap_idx = h_offset * input_width + w_offset;
C
chengduoZH 已提交
1333
    int output_idx =
1334
        (batch_idx * channels + offsetC) * output_height * output_width;
C
chengduoZH 已提交
1335

C
chengduoZH 已提交
1336 1337
    mask_data += output_idx;
    output_grad += output_idx;
1338 1339
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
C
chengduoZH 已提交
1340
        if (mask_data[ph * output_width + pw] == input_current_featuremap_idx)
C
chengduoZH 已提交
1341 1342 1343 1344 1345 1346 1347
          gradient += output_grad[ph * output_width + pw];
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
1348 1349 1350 1351 1352
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1353
template <typename T1, typename T2>
Q
QI JUN 已提交
1354
class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1355
 public:
Q
QI JUN 已提交
1356
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
1357 1358
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1359 1360
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1361 1362 1363 1364
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
1365 1366 1367
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
1368 1369 1370 1371 1372 1373 1374
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
1375 1376 1377
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1378 1379 1380 1381 1382 1383

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1384
    KernelMaxPool2dWithIdx<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1385 1386
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
1387 1388
        stride_width, padding_height, padding_width, adaptive, output_data,
        mask_data);
C
chengduoZH 已提交
1389 1390 1391
  }
};

C
chengduoZH 已提交
1392 1393 1394 1395 1396
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1397
template <typename T1, typename T2>
Q
QI JUN 已提交
1398
class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1399
 public:
Q
QI JUN 已提交
1400
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1401
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1402 1403
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1404
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1405 1406 1407 1408 1409
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
1419 1420 1421
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1422 1423 1424 1425 1426 1427

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1428
    KernelMaxPool2DWithIdxGrad<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1429 1430
        nthreads, output_grad_data, mask_data, input_channels, input_height,
        input_width, output_height, output_width, ksize_height, ksize_width,
1431
        stride_height, stride_width, padding_height, padding_width, adaptive,
C
chengduoZH 已提交
1432
        input_grad_data);
C
chengduoZH 已提交
1433 1434 1435
  }
};

Q
QI JUN 已提交
1436 1437 1438 1439 1440 1441 1442 1443
template class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext,
                                             double, int>;
C
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445
template <typename T1, typename T2>
C
chengduoZH 已提交
1446
__global__ void KernelMaxPool3DWithIdx(
C
chengduoZH 已提交
1447
    const int nthreads, const T1* input_data, const int channels,
C
chengduoZH 已提交
1448 1449 1450 1451 1452
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
1453
    bool adaptive, T1* output_data, T2* mask_data) {
C
chengduoZH 已提交
1454
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1455 1456 1457 1458 1459 1460 1461
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
C
chengduoZH 已提交
1462

1463 1464 1465 1466
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
1467 1468
      dstart = AdaptStartIndex(pd, input_depth, output_depth);
      dend = AdaptEndIndex(pd, input_depth, output_depth);
1469

D
dengkaipeng 已提交
1470 1471
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
1472

D
dengkaipeng 已提交
1473 1474
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    } else {
      dstart = pd * stride_depth - padding_depth;
      hstart = ph * stride_height - padding_height;
      wstart = pw * stride_width - padding_width;
      dend = min(dstart + ksize_depth, input_depth);
      hend = min(hstart + ksize_height, input_height);
      wend = min(wstart + ksize_width, input_width);
      dstart = max(dstart, 0);
      hstart = max(hstart, 0);
      wstart = max(wstart, 0);
    }
C
chengduoZH 已提交
1486

C
chengduoZH 已提交
1487
    T1 ele = -FLT_MAX;
C
chengduoZH 已提交
1488
    int max_index = -1;
C
chengduoZH 已提交
1489 1490 1491 1492 1493 1494 1495
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          if (ele < input_data[(d * input_height + h) * input_width + w]) {
C
chengduoZH 已提交
1496 1497
            max_index = (d * input_height + h) * input_width + w;
            ele = input_data[max_index];
C
chengduoZH 已提交
1498 1499 1500 1501 1502
          }
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
1503
    mask_data[index] = max_index;
C
chengduoZH 已提交
1504 1505 1506
  }
}

C
chengduoZH 已提交
1507
template <typename T1, typename T2>
C
chengduoZH 已提交
1508
__global__ void KernelMaxPool3DWithIdxGrad(
C
chengduoZH 已提交
1509 1510 1511 1512 1513 1514
    const int nthreads, const T1* output_grad, const T2* mask,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
1515
    const int padding_width, bool adaptive, T1* input_grad) {
C
chengduoZH 已提交
1516
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1517
       index += blockDim.x * gridDim.x) {
D
dengkaipeng 已提交
1518 1519 1520
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int d_offset = (index / input_width / input_height) % input_depth;
1521
    int offsetC = (index / input_width / input_height / input_depth) % channels;
C
chengduoZH 已提交
1522 1523
    int batch_idx = index / input_width / input_height / input_depth / channels;

1524 1525 1526 1527
    int pdstart, pdend;
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
D
dengkaipeng 已提交
1528 1529 1530 1531
      pdstart = d_offset * output_depth / input_depth;
      pdend =
          min((d_offset + 1) * output_depth / input_depth + 1, output_depth);
      phstart = h_offset * output_height / input_height;
1532
      phend =
D
dengkaipeng 已提交
1533 1534 1535 1536
          min((h_offset + 1) * output_height / input_height + 1, output_height);
      pwstart = w_offset * output_width / input_width;
      pwend =
          min((w_offset + 1) * output_width / input_width + 1, output_width);
1537 1538
    } else {
      pdstart =
D
dengkaipeng 已提交
1539
          (d_offset + padding_depth < ksize_depth)
1540
              ? 0
D
dengkaipeng 已提交
1541
              : (d_offset + padding_depth - ksize_depth) / stride_depth + 1;
1542
      phstart =
D
dengkaipeng 已提交
1543
          (h_offset + padding_height < ksize_height)
1544
              ? 0
D
dengkaipeng 已提交
1545
              : (h_offset + padding_height - ksize_height) / stride_height + 1;
1546
      pwstart =
D
dengkaipeng 已提交
1547
          (w_offset + padding_width < ksize_width)
1548
              ? 0
D
dengkaipeng 已提交
1549 1550
              : (w_offset + padding_width - ksize_width) / stride_width + 1;
      pdend = min((d_offset + padding_depth) / stride_depth + 1, output_depth);
1551
      phend =
D
dengkaipeng 已提交
1552 1553
          min((h_offset + padding_height) / stride_height + 1, output_height);
      pwend = min((w_offset + padding_width) / stride_width + 1, output_width);
1554
    }
C
chengduoZH 已提交
1555

C
chengduoZH 已提交
1556
    T1 gradient = 0;
C
chengduoZH 已提交
1557
    int input_current_feature_map_idx =
D
dengkaipeng 已提交
1558
        (d_offset * input_height + h_offset) * input_width + w_offset;
1559
    int output_idx = (batch_idx * channels + offsetC) * output_depth *
C
chengduoZH 已提交
1560 1561 1562 1563
                     output_height * output_width;
    mask += output_idx;
    output_grad += output_idx;

1564 1565 1566
    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
C
chengduoZH 已提交
1567 1568
          if (mask[(pd * output_height + ph) * output_width + pw] ==
              input_current_feature_map_idx)
C
chengduoZH 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577
            gradient +=
                output_grad[(pd * output_height + ph) * output_width + pw];
        }
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
1578 1579 1580 1581 1582
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1583
template <typename T1, typename T2>
Q
QI JUN 已提交
1584
class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1585
 public:
Q
QI JUN 已提交
1586
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
1587 1588
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1589 1590
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1591 1592 1593 1594 1595
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
1596 1597 1598 1599
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
1610 1611 1612
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1613 1614 1615 1616 1617 1618 1619

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1620
    KernelMaxPool3DWithIdx<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1621 1622 1623
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
1624 1625
        padding_depth, padding_height, padding_width, adaptive, output_data,
        mask_data);
C
chengduoZH 已提交
1626 1627 1628
  }
};

C
chengduoZH 已提交
1629 1630 1631 1632 1633
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1634
template <typename T1, typename T2>
Q
QI JUN 已提交
1635
class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1636
 public:
Q
QI JUN 已提交
1637
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1638
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1639 1640
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1641
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1642 1643 1644 1645 1646 1647
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
1648 1649 1650
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
C
chengduoZH 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
1661 1662 1663
    const T1* output_grad_data = output_grad.data<T1>();
    const T2* mask_data = mask.data<T2>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1664 1665 1666 1667 1668 1669 1670

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1671
    KernelMaxPool3DWithIdxGrad<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1672 1673 1674
        nthreads, output_grad_data, mask_data, input_channels, input_depth,
        input_height, input_width, output_depth, output_height, output_width,
        ksize_depth, ksize_height, ksize_width, stride_depth, stride_height,
1675
        stride_width, padding_depth, padding_height, padding_width, adaptive,
C
chengduoZH 已提交
1676
        input_grad_data);
C
chengduoZH 已提交
1677 1678 1679
  }
};

Q
QI JUN 已提交
1680 1681 1682 1683 1684 1685 1686 1687
template class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext,
                                             double, int>;
C
chengduoZH 已提交
1688 1689 1690 1691

}  // namespace math
}  // namespace operators
}  // namespace paddle