Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bee95fc8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bee95fc8
编写于
9月 29, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix code format and some bug
上级
6326c40d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
180 addition
and
121 deletion
+180
-121
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+10
-10
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+82
-65
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+0
-1
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+45
-26
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+7
-3
python/paddle/v2/framework/tests/test_pool_max_op.py
python/paddle/v2/framework/tests/test_pool_max_op.py
+36
-16
未找到文件。
paddle/operators/math/pooling.cc
浏览文件 @
bee95fc8
...
...
@@ -26,7 +26,6 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
...
...
@@ -112,11 +111,11 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
}
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
};
...
...
@@ -152,6 +151,7 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const
int
padding_width
=
paddings
[
2
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -170,17 +170,17 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
])
{
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
];
int
input_idx
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
if
(
ele
<
input_data
[
input_idx
])
{
index
=
input_idx
;
ele
=
input_data
[
input_idx
];
}
}
}
...
...
paddle/operators/math/pooling.cu
浏览文件 @
bee95fc8
...
...
@@ -20,14 +20,14 @@ namespace operators {
namespace
math
{
template
<
typename
T
>
__global__
void
KernelMaxPool2dWithIdx
Forward
(
__global__
void
KernelMaxPool2dWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
T
*
output_data
,
T
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
int
c
=
(
index
/
output_width
/
output_height
)
%
channels
;
...
...
@@ -43,51 +43,58 @@ __global__ void KernelMaxPool2dWithIdxForward(
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
T
ele
=
-
FLT_MAX
;
int
index
=
-
1
;
int
max_
index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[
h
*
input_width
+
w
])
{
index
=
h
*
input_width
+
w
;
ele
=
input_data
[
h
*
input_width
+
w
];
int
input_index
=
h
*
input_width
+
w
;
if
(
ele
<
input_data
[
input_index
])
{
max_index
=
input_index
;
ele
=
input_data
[
input_index
];
}
}
}
output_data
[
index
]
=
ele
;
mask_data
[
index
]
=
index
;
mask_data
[
index
]
=
max_
index
;
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool2DWithIdx
Backwar
d
(
__global__
void
KernelMaxPool2DWithIdx
Gra
d
(
const
int
nthreads
,
T
*
input_grad
,
const
T
*
output_grad
,
const
T
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
int
offsetW
=
index
%
input_width
+
padding
_width
;
int
offsetH
=
(
index
/
input_width
)
%
input_height
+
padding
_height
;
int
offsetC
=
(
index
/
input_width
/
input_height
)
%
channels
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input
_width
;
int
h_offset
=
(
index
/
input_width
)
%
input
_height
;
int
c_offset
=
(
index
/
input_width
/
input_height
)
%
channels
;
int
batch_idx
=
index
/
input_width
/
input_height
/
channels
;
int
phstart
=
(
offsetH
<
ksize_height
)
?
0
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
int
pwstart
=
(
offsetW
<
ksize_width
)
?
0
:
(
offsetW
-
ksize_width
)
/
stride_width
+
1
;
int
phend
=
min
(
offsetH
/
stride_height
+
1
,
output_height
);
int
pwend
=
min
(
offsetW
/
stride_width
+
1
,
output_width
);
int
ph_start
=
(
h_offset
+
padding_height
<
ksize_height
)
?
0
:
(
h_offset
+
padding_height
-
ksize_height
)
/
stride_height
+
1
;
int
pw_start
=
(
w_offset
+
padding_width
<
ksize_width
)
?
0
:
(
w_offset
+
padding_width
-
ksize_width
)
/
stride_width
+
1
;
int
ph_end
=
min
((
h_offset
+
padding_height
)
/
stride_height
+
1
,
output_height
);
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
int
input_current_featuremap_idx
=
h_offset
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
offsetC
)
*
output_height
*
output_width
;
(
batch_idx
*
channels
+
c_offset
)
*
output_height
*
output_width
;
mask_data
+=
output_idx
;
output_grad
+=
output_idx
;
for
(
int
ph
=
phstart
;
ph
<
phend
;
++
ph
)
{
for
(
int
pw
=
pwstart
;
pw
<
pwend
;
++
pw
)
{
if
((
offsetH
*
input_width
+
offsetW
)
==
mask_data
[
ph
*
output_width
+
pw
])
for
(
int
ph
=
ph_start
;
ph
<
ph_end
;
++
ph
)
{
for
(
int
pw
=
pw_start
;
pw
<
pw_end
;
++
pw
)
{
if
(
mask_data
[
ph
*
output_width
+
pw
]
==
input_current_featuremap_idx
)
gradient
+=
output_grad
[
ph
*
output_width
+
pw
];
}
}
...
...
@@ -125,7 +132,7 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool2dWithIdx
Forward
<
KernelMaxPool2dWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
mask_data
,
...
...
@@ -167,7 +174,7 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool2DWithIdx
Backwar
d
<
KernelMaxPool2DWithIdx
Gra
d
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_grad_data
,
output_grad_data
,
...
...
@@ -184,7 +191,7 @@ template class MaxPool2dWithIndexFunctor<platform::GPUPlace, double>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
<
typename
T
>
__global__
void
KernelMaxPool3DWithIdx
Forward
(
__global__
void
KernelMaxPool3DWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
T
*
output_data
,
T
*
mask_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
...
...
@@ -200,6 +207,7 @@ __global__ void KernelMaxPool3DWithIdxForward(
int
c
=
(
index
/
output_width
/
output_height
/
output_depth
)
%
channels
;
int
batch_idx
=
index
/
output_width
/
output_height
/
output_depth
/
channels
;
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
wstart
=
pw
*
stride_width
-
padding_width
;
...
...
@@ -209,8 +217,9 @@ __global__ void KernelMaxPool3DWithIdxForward(
dstart
=
max
(
dstart
,
0
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
T
ele
=
-
FLT_MAX
;
int
index
=
-
1
;
int
max_
index
=
-
1
;
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -218,19 +227,19 @@ __global__ void KernelMaxPool3DWithIdxForward(
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
])
{
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[
(
d
*
input_height
+
h
)
*
input_width
+
w
];
max_
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[
max_index
];
}
}
}
}
output_data
[
index
]
=
ele
;
mask_data
[
index
]
=
index
;
mask_data
[
index
]
=
max_
index
;
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool3DWithIdx
Backwar
d
(
__global__
void
KernelMaxPool3DWithIdx
Gra
d
(
const
int
nthreads
,
T
*
input_grad
,
const
T
*
output_grad
,
const
T
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
...
...
@@ -240,37 +249,45 @@ __global__ void KernelMaxPool3DWithIdxBackward(
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
);
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
offsetW
=
index
%
input_width
+
padding
_width
;
int
offsetH
=
(
index
/
input_width
)
%
input_height
+
padding
_height
;
int
offsetD
=
(
index
/
input_width
/
input_height
)
%
input_depth
+
padding_depth
;
int
offsetC
=
(
index
/
input_width
/
input_height
/
input_depth
)
%
channels
;
int
w_offset
=
index
%
input
_width
;
int
h_offset
=
(
index
/
input_width
)
%
input
_height
;
int
d_offset
=
(
index
/
input_width
/
input_height
)
%
input_depth
;
int
c_offset
=
(
index
/
input_width
/
input_height
/
input_depth
)
%
channels
;
int
batch_idx
=
index
/
input_width
/
input_height
/
input_depth
/
channels
;
int
pdstart
=
(
offsetD
<
ksize_depth
)
?
0
:
(
offsetD
-
ksize_depth
)
/
stride_depth
+
1
;
int
phstart
=
(
offsetH
<
ksize_height
)
?
0
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
int
pwstart
=
(
offsetW
<
ksize_width
)
?
0
:
(
offsetW
-
ksize_width
)
/
stride_width
+
1
;
int
pdend
=
min
((
offsetD
)
/
stride_depth
+
1
,
output_depth
);
int
phend
=
min
((
offsetH
)
/
stride_height
+
1
,
output_height
);
int
pwend
=
min
((
offsetW
)
/
stride_width
+
1
,
output_width
);
int
pd_start
=
(
d_offset
+
padding_depth
<
ksize_depth
)
?
0
:
(
d_offset
+
padding_depth
-
ksize_depth
)
/
stride_depth
+
1
;
int
ph_start
=
(
h_offset
+
padding_height
<
ksize_height
)
?
0
:
(
h_offset
+
padding_height
-
ksize_height
)
/
stride_height
+
1
;
int
pw_start
=
(
w_offset
+
padding_width
<
ksize_width
)
?
0
:
(
w_offset
+
padding_width
-
ksize_width
)
/
stride_width
+
1
;
int
pd_end
=
min
((
d_offset
+
padding_depth
)
/
stride_depth
+
1
,
output_depth
);
int
ph_end
=
min
((
h_offset
+
padding_height
)
/
stride_height
+
1
,
output_height
);
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
int
output_idx
=
(
batch_idx
*
channels
+
offsetC
)
*
output_depth
*
int
input_current_feature_map_idx
=
(
d_offset
*
input_height
+
h_offset
)
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_depth
*
output_height
*
output_width
;
mask
+=
output_idx
;
output_grad
+=
output_idx
;
for
(
int
pd
=
pd
start
;
pd
<
pd
end
;
++
pd
)
{
for
(
int
ph
=
ph
start
;
ph
<
ph
end
;
++
ph
)
{
for
(
int
pw
=
pw
start
;
pw
<
pw
end
;
++
pw
)
{
if
(
((
offsetD
*
input_height
+
offsetH
)
*
input_width
+
offsetW
)
==
mask
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
]
)
for
(
int
pd
=
pd
_start
;
pd
<
pd_
end
;
++
pd
)
{
for
(
int
ph
=
ph
_start
;
ph
<
ph_
end
;
++
ph
)
{
for
(
int
pw
=
pw
_start
;
pw
<
pw_
end
;
++
pw
)
{
if
(
mask
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
]
==
input_current_feature_map_idx
)
gradient
+=
output_grad
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
];
}
...
...
@@ -308,7 +325,7 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_depth
*
output_height
*
output_width
;
...
...
@@ -316,7 +333,7 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
Forward
<
KernelMaxPool3DWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
...
...
@@ -341,10 +358,10 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
input_depth
=
input_grad
.
dims
()[
2
];
const
int
input_height
=
input_grad
.
dims
()[
3
];
const
int
input_width
=
input_grad
.
dims
()[
4
];
const
int
output_channels
=
in
put_grad
.
dims
()[
1
];
const
int
output_depth
=
in
put_grad
.
dims
()[
2
];
const
int
output_height
=
in
put_grad
.
dims
()[
3
];
const
int
output_width
=
in
put_grad
.
dims
()[
4
];
const
int
output_channels
=
out
put_grad
.
dims
()[
1
];
const
int
output_depth
=
out
put_grad
.
dims
()[
2
];
const
int
output_height
=
out
put_grad
.
dims
()[
3
];
const
int
output_width
=
out
put_grad
.
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
...
...
@@ -365,7 +382,7 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
Backwar
d
<
KernelMaxPool3DWithIdx
Gra
d
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
...
...
paddle/operators/math/pooling.h
浏览文件 @
bee95fc8
...
...
@@ -23,7 +23,6 @@ namespace operators {
namespace
math
{
//////////////////////
#define FLT_MAX __FLT_MAX__
/////////////////////
template
<
typename
Place
,
typename
T
>
class
MaxPool2dWithIndexFunctor
{
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
bee95fc8
...
...
@@ -76,8 +76,8 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"X"
)
),
"X(Input) of
MaxPoolWithIndexOpGrad
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"X(Input) of
Pooling
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"X@GRAD(Input@GRAD) of MaxPoolWithIndexOpGrad should not be null."
);
...
...
@@ -97,28 +97,37 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"number of channels, H and W is the height and width of image."
);
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of image."
);
AddOutput
(
"Mask"
,
"The Mask tensor of pooling operator."
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
"Where N is batch size, C is the number of channels, H and W "
"is the height and width of image."
"The value in it is the index in current feature map"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(height, width) of pooling operator."
);
"ksize"
,
"Pooling size(height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."
);
// TODO(Add checker)
AddAttr
<
bool
>
(
"globalPooling"
,
"
w
hether to use the globalPooling."
"
int constant equal to false or true
"
"
default false
"
"
W
hether to use the globalPooling."
"
Bool constant equal to false or true.
"
"
Default false.
"
"If globalPooling = true, ksize is ignored and need not be specified."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"
s
trides(height, width) of pooling operator."
"
default {1,1}
"
)
.
SetDefault
({
1
,
1
});
"
S
trides(height, width) of pooling operator."
"
Default {1,1}.
"
)
.
SetDefault
({
1
,
1
});
// TODO(Add checker)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"
p
addings(height, width) of pooling operator."
"
default {0,0}
"
)
.
SetDefault
({
0
,
0
});
"
P
addings(height, width) of pooling operator."
"
Default {0,0}.
"
)
.
SetDefault
({
0
,
0
});
// TODO(Add checker)
AddComment
(
R"DOC(
The maxPooling2d with index operation calculates the output and the mask based on
...
...
@@ -140,30 +149,40 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"image."
);
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of image."
);
AddOutput
(
"Mask"
,
"The Mask tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
"The format of output tensor is also NCDHW."
"Where N is batch size, C is the number of channels, D, H and W "
"is the depth, height and width of image."
"The value in it is the index in current feature map"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(depth, height, width) of pooling operator."
);
"ksize"
,
"Pooling size(depth, height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."
);
// TODO(Add checker)
AddAttr
<
bool
>
(
"globalPooling"
,
"
w
hether to use the globalPooling."
"
int constant equal to false or true
"
"
default false
"
"
W
hether to use the globalPooling."
"
Bool constant equal to false or true.
"
"
Default false.
"
"If globalPooling = true, ksize is ignored and need not be specified."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"
s
trides(depth, height, width) of pooling operator."
"
default {1,1,1}
"
)
.
SetDefault
({
1
,
1
,
1
});
"
S
trides(depth, height, width) of pooling operator."
"
Default {1,1,1}.
"
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Add checker)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings(depth, height, width) of pooling operator."
"default {0,0,0}"
)
.
SetDefault
({
0
,
0
,
0
});
"Paddings(depth, height, width) of pooling operator."
"Default {0,0,0}."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Add checker)
AddComment
(
R"DOC(
The maxpooling3d with index operation calculates the output and the mask based on
the input and ksize, strides, paddings parameters.
...
...
paddle/operators/pool_with_index_op.h
浏览文件 @
bee95fc8
...
...
@@ -32,11 +32,10 @@ class MaxPoolWithIndexKernel : public framework::OpKernel {
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
Tensor
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
bool
global_pooling
=
context
.
Attr
<
bool
>
(
"globalPooling"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
)
{
if
(
context
.
Attr
<
bool
>
(
"globalPooling"
)
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
}
...
...
@@ -63,7 +62,7 @@ template <typename Place, typename T>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Ma
ks
"
);
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Ma
sk
"
);
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
@@ -71,6 +70,11 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"globalPooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
static_cast
<
int
>
(
in_x_grad
->
dims
()[
i
+
2
]);
}
}
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
python/paddle/v2/framework/tests/test_pool_max_op.py
浏览文件 @
bee95fc8
...
...
@@ -3,7 +3,11 @@ import numpy as np
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
],
global_pool
=
0
):
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
,
0
],
global_pool
=
0
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
...
...
@@ -25,8 +29,19 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
# mask[:,:, k, i, j] = np.argmax(x_masked, axis=(2, 3, 4))
return
out
for
n
in
xrange
(
N
):
for
c
in
xrange
(
C
):
arr
=
x_masked
[
n
,
c
,
:,
:,
:]
index
=
np
.
where
(
arr
==
np
.
max
(
arr
))
sub_deep
=
index
[
0
][
0
]
sub_row
=
index
[
1
][
0
]
sub_col
=
index
[
2
][
0
]
index
=
((
d_start
+
sub_deep
)
*
H
+
(
h_start
+
sub_row
))
*
W
+
w_start
+
sub_col
mask
[
n
,
c
,
k
,
i
,
j
]
=
index
return
out
,
mask
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
],
global_pool
=
0
):
...
...
@@ -47,19 +62,25 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
x_masked
=
x
[:,
:,
r_start
:
r_end
,
c_start
:
c_end
]
out
[:,
:,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
))
# mask[:,:, i, j] = np.argmax(x_masked, axis=(2, 3))
return
out
for
n
in
xrange
(
N
):
for
c
in
xrange
(
C
):
arr
=
x_masked
[
n
,
c
,
:,
:]
index
=
np
.
where
(
arr
==
np
.
max
(
arr
))
sub_row
=
index
[
0
][
0
]
sub_col
=
index
[
1
][
0
]
index
=
(
r_start
+
sub_row
)
*
W
+
c_start
+
sub_col
mask
[
n
,
c
,
i
,
j
]
=
index
return
out
,
mask
class
TestMaxPoolWithIndex_Op
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
"maxPool3dWithIndex"
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
# mask = np.zeros(output.shape)
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -69,7 +90,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
}
self
.
inputs
=
{
'X'
:
input
}
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
,
"Mask"
:
mask
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -78,7 +99,8 @@ class TestMaxPoolWithIndex_Op(OpTest):
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
def
initTestCase
(
self
):
self
.
global_pool
=
0
self
.
global_pool
=
False
self
.
op_type
=
"maxPool3dWithIndex"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
self
.
ksize
=
[
3
,
3
,
3
]
...
...
@@ -86,10 +108,9 @@ class TestMaxPoolWithIndex_Op(OpTest):
self
.
paddings
=
[
1
,
1
,
1
]
""""
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
1
self
.
global_pool
=
True
self
.
op_type
=
"maxPool3dWithIndex"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
...
...
@@ -100,7 +121,7 @@ class TestCase1(TestMaxPoolWithIndex_Op):
class
TestCase2
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
0
self
.
global_pool
=
False
self
.
op_type
=
"maxPool2dWithIndex"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -111,7 +132,7 @@ class TestCase2(TestMaxPoolWithIndex_Op):
class
TestCase3
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
1
self
.
global_pool
=
True
self
.
op_type
=
"maxPool2dWithIndex"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
...
...
@@ -122,4 +143,3 @@ class TestCase3(TestMaxPoolWithIndex_Op):
if
__name__
==
'__main__'
:
unittest
.
main
()
"""
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录