Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bb33c2b3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bb33c2b3
编写于
9月 30, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix kernel func
上级
2ed56df1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
270 addition
and
8 deletion
+270
-8
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+227
-0
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+4
-6
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+37
-0
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+2
-2
未找到文件。
paddle/operators/math/pooling.cc
浏览文件 @
bb33c2b3
...
...
@@ -458,6 +458,233 @@ template class Pool3dGradFunctor<
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
MaxPoolGrad
<
double
>,
double
>
;
template
class
Pool3dGradFunctor
<
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
double
>,
double
>
;
template
<
typename
T
>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[
h
*
input_width
+
w
])
{
ele
=
input_data
[
h
*
input_width
+
w
];
index
=
h
*
input_width
+
w
;
}
}
}
output_data
[
ph
*
output_width
+
pw
]
=
ele
;
mask_data
[
ph
*
output_width
+
pw
]
=
index
;
}
}
// offset
input_data
+=
input_stride
;
output_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
}
};
template
<
typename
T
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input_grad
.
dims
()[
0
];
const
int
input_height
=
input_grad
.
dims
()[
2
];
const
int
input_width
=
input_grad
.
dims
()[
3
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_height
=
output_grad
.
dims
()[
2
];
const
int
output_width
=
output_grad
.
dims
()[
3
];
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
const
int
output_idx
=
ph
*
output_width
+
pw
;
const
int
input_idx
=
static_cast
<
int
>
(
mask_data
[
output_idx
]);
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
}
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
}
};
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
<
typename
T
>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
4
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_depth
=
output
.
dims
()[
2
];
const
int
output_height
=
output
.
dims
()[
3
];
const
int
output_width
=
output
.
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
const
int
stride_depth
=
strides
[
0
];
const
int
stride_height
=
strides
[
1
];
const
int
stride_width
=
strides
[
2
];
const
int
padding_depth
=
paddings
[
0
];
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
int
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
std
::
max
(
dstart
,
0
);
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
int
input_idx
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
if
(
ele
<
input_data
[
input_idx
])
{
index
=
input_idx
;
ele
=
input_data
[
input_idx
];
}
}
}
}
output_data
[
output_idx
]
=
ele
;
mask_data
[
output_idx
]
=
index
;
}
}
}
// offset
input_data
+=
input_stride
;
output_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
}
};
template
<
typename
T
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input_grad
.
dims
()[
0
];
const
int
input_depth
=
input_grad
.
dims
()[
2
];
const
int
input_height
=
input_grad
.
dims
()[
3
];
const
int
input_width
=
input_grad
.
dims
()[
4
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_depth
=
output_grad
.
dims
()[
2
];
const
int
output_height
=
output_grad
.
dims
()[
3
];
const
int
output_width
=
output_grad
.
dims
()[
4
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
const
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
const
int
input_idx
=
static_cast
<
int
>
(
mask_data
[
output_idx
]);
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
}
}
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
}
};
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/pooling.cu
浏览文件 @
bb33c2b3
...
...
@@ -637,7 +637,7 @@ __global__ void KernelMaxPool2dWithIdx(
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
...
...
@@ -676,7 +676,7 @@ __global__ void KernelMaxPool2DWithIdxGrad(
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
int
h_offset
=
(
index
/
input_width
)
%
input_height
;
...
...
@@ -766,7 +766,6 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
input_channels
=
input_grad
.
dims
()[
1
];
const
int
input_height
=
input_grad
.
dims
()[
2
];
const
int
input_width
=
input_grad
.
dims
()[
3
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_height
=
output_grad
.
dims
()[
2
];
const
int
output_width
=
output_grad
.
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
...
...
@@ -810,7 +809,7 @@ __global__ void KernelMaxPool3DWithIdx(
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
...
...
@@ -858,7 +857,7 @@ __global__ void KernelMaxPool3DWithIdxGrad(
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
int
h_offset
=
(
index
/
input_width
)
%
input_height
;
...
...
@@ -969,7 +968,6 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
input_depth
=
input_grad
.
dims
()[
2
];
const
int
input_height
=
input_grad
.
dims
()[
3
];
const
int
input_width
=
input_grad
.
dims
()[
4
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_depth
=
output_grad
.
dims
()[
2
];
const
int
output_height
=
output_grad
.
dims
()[
3
];
const
int
output_width
=
output_grad
.
dims
()[
4
];
...
...
paddle/operators/math/pooling.h
浏览文件 @
bb33c2b3
...
...
@@ -117,6 +117,43 @@ class MaxPool3dGradFunctor {
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool2dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool2dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool3dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool3dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/pool_with_index_op.h
浏览文件 @
bb33c2b3
...
...
@@ -25,7 +25,7 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
{
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -59,7 +59,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel {
};
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
{
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Mask"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录