test_elementwise_min_op.py 9.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15
import unittest
16

F
fengjiayi 已提交
17
import numpy as np
18
from eager_op_test import OpTest, skip_check_grad_ci
19

S
sneaxiy 已提交
20 21 22
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23
from paddle import _legacy_C_ops
S
sneaxiy 已提交
24 25

paddle.enable_static()
F
fengjiayi 已提交
26 27


28 29 30 31 32 33 34
def broadcast_wrapper(shape=[1, 10, 12, 1]):
    def min_wrapper(x, y, axis=-1):
        return paddle.minimum(x, y.reshape(shape))

    return min_wrapper


F
fengjiayi 已提交
35 36 37
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
38
        self.python_api = paddle.minimum
F
fengjiayi 已提交
39
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
40 41
        # So we generate test data by the following method
        # to avoid them being too close to each other.
42 43 44
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
45 46 47 48
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
49
        self.check_output()
F
fengjiayi 已提交
50 51

    def test_check_grad_normal(self):
52
        self.check_grad(['X', 'Y'], 'Out')
F
fengjiayi 已提交
53 54

    def test_check_grad_ingore_x(self):
55 56 57
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
F
fengjiayi 已提交
58 59

    def test_check_grad_ingore_y(self):
60 61 62
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
F
fengjiayi 已提交
63 64


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class TestElementwiseMinOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


95
@skip_check_grad_ci(
96 97
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
98 99 100
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
101
        self.python_api = paddle.minimum
102 103
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
104 105 106 107
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


108
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
109 110
    def setUp(self):
        self.op_type = "elementwise_min"
111
        self.python_api = paddle.minimum
112 113 114
        x = np.random.random((100,)).astype("float64")
        sgn = np.random.choice([-1, 1], (100,)).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100,)).astype("float64")
F
fengjiayi 已提交
115 116 117 118
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


119
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
120 121
    def setUp(self):
        self.op_type = "elementwise_min"
122
        self.python_api = broadcast_wrapper(shape=[100, 1, 1])
123
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
124 125 126 127
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[:, 0, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
128 129 130 131
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
132 133 134
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
F
fengjiayi 已提交
135 136 137
        }


138
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
139 140
    def setUp(self):
        self.op_type = "elementwise_min"
141
        self.python_api = broadcast_wrapper(shape=[1, 100, 1])
142
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
143 144 145 146
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, :, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
147 148 149 150
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
151 152 153
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1)
            )
F
fengjiayi 已提交
154 155 156
        }


157
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
158 159
    def setUp(self):
        self.op_type = "elementwise_min"
160
        self.python_api = broadcast_wrapper(shape=[1, 1, 100])
161
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
162 163 164 165
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
166 167 168
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
169 170 171
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100)
            )
F
fengjiayi 已提交
172 173 174
        }


175
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
176 177
    def setUp(self):
        self.op_type = "elementwise_min"
178
        self.python_api = broadcast_wrapper(shape=[1, 25, 4, 1])
179 180
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
181 182 183
        y = x[0, :, :, 0] + sgn * np.random.uniform(1, 2, (25, 4)).astype(
            np.float64
        )
F
fengjiayi 已提交
184 185 186 187
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
188 189 190
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1)
            )
F
fengjiayi 已提交
191 192 193
        }


194 195 196
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
197
        self.python_api = paddle.minimum
198 199
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
200
        y = x + sgn * np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
201 202 203 204 205
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
class TestElementwiseMinOpFP16(unittest.TestCase):
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
220
            z = _legacy_C_ops.elementwise_min(x, y, 'axis', axis)
S
sneaxiy 已提交
221
            x_g, y_g = paddle.grad([z], [x, y])
222 223 224 225 226
            return (
                z.numpy().astype(dtype),
                x_g.numpy().astype(dtype),
                y_g.numpy().astype(dtype),
            )
S
sneaxiy 已提交
227 228 229 230 231 232 233 234 235 236 237

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

238 239 240
        z_1, x_g_1, y_g_1 = self.get_out_and_grad(
            x_np, y_np, axis, place, False
        )
S
sneaxiy 已提交
241
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
242 243 244
        np.testing.assert_array_equal(z_1, z_2)
        np.testing.assert_array_equal(x_g_1, x_g_2)
        np.testing.assert_array_equal(y_g_1, y_g_2)
S
sneaxiy 已提交
245 246 247

    def test_main(self):
        self.check_main((13, 17), (13, 17))
248 249 250 251 252
        self.check_main((10, 3, 4), (1,))
        self.check_main((100,), (100,))
        self.check_main((100, 3, 2), (100,), 0)
        self.check_main((2, 100, 3), (100,), 1)
        self.check_main((2, 3, 100), (100,))
S
sneaxiy 已提交
253 254 255 256
        self.check_main((2, 25, 4, 1), (25, 4), 1)
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
257 258
if __name__ == '__main__':
    unittest.main()