test_elementwise_min_op.py 5.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
F
fengjiayi 已提交
20 21 22 23 24


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
F
fengjiayi 已提交
25
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
26 27
        # So we generate test data by the following method
        # to avoid them being too close to each other.
28 29 30
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
31 32 33 34 35 36 37
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
38
        self.check_grad(['X', 'Y'], 'Out')
F
fengjiayi 已提交
39 40 41 42 43 44 45 46 47 48

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


49 50
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
51 52 53
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
54 55
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
56 57 58 59
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


60
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
61 62
    def setUp(self):
        self.op_type = "elementwise_min"
63 64 65
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
66 67 68 69
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


70
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
71 72
    def setUp(self):
        self.op_type = "elementwise_min"
73 74
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
75
        y = x[:, 0, 0] + sgn * \
76
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
77 78 79 80 81
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
82
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
83 84 85
        }


86
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
87 88
    def setUp(self):
        self.op_type = "elementwise_min"
89 90
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
91
        y = x[0, :, 0] + sgn * \
92
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
93 94 95 96 97
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
98
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
99 100 101
        }


102
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
103 104
    def setUp(self):
        self.op_type = "elementwise_min"
105 106
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
107
        y = x[0, 0, :] + sgn * \
108
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
109 110 111 112
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
            'Out':
113
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
114 115 116
        }


117
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
118 119
    def setUp(self):
        self.op_type = "elementwise_min"
120 121
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
F
fengjiayi 已提交
122
        y = x[0, :, :, 0] + sgn * \
123
            np.random.uniform(1, 2, (25, 4)).astype(np.float64)
F
fengjiayi 已提交
124 125 126 127 128
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
129
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1))
F
fengjiayi 已提交
130 131 132
        }


133 134 135
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
136 137
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
138
        y = x + sgn * \
139
            np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
140 141 142 143 144
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
145 146
if __name__ == '__main__':
    unittest.main()