test_elementwise_min_op.py 5.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
F
fengjiayi 已提交
20 21 22 23 24


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
F
fengjiayi 已提交
25
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
26 27 28 29 30 31 32 33 34 35 36 37
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
38
        self.check_grad(['X', 'Y'], 'Out')
F
fengjiayi 已提交
39 40 41 42 43 44 45 46 47 48

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


49 50 51
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
52
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float32")
53 54 55 56 57
        y = np.array([0.5]).astype("float32")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


58
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
59 60
    def setUp(self):
        self.op_type = "elementwise_min"
61 62 63
        x = np.random.random((100, )).astype("float32")
        sgn = np.random.choice([-1, 1], (100, )).astype("float32")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float32")
F
fengjiayi 已提交
64 65 66 67
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


68
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
        y = x[:, 0, 0] + sgn * \
            np.random.uniform(1, 2, (2, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
        }


84
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
        y = x[0, :, 0] + sgn * \
            np.random.uniform(1, 2, (3, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
        }


100
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
        y = x[0, 0, :] + sgn * \
            np.random.uniform(1, 2, (4, )).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
        }


115
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
        y = x[0, :, :, 0] + sgn * \
            np.random.uniform(1, 2, (3, 4)).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
        }


131 132 133 134 135 136 137 138 139 140 141 142
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
        sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float32)
        y = x + sgn * \
            np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float32)
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
143 144
if __name__ == '__main__':
    unittest.main()