test_elementwise_min_op.py 9.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15
import unittest
16

F
fengjiayi 已提交
17
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19

S
sneaxiy 已提交
20 21 22
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23
from paddle import _legacy_C_ops
S
sneaxiy 已提交
24 25

paddle.enable_static()
F
fengjiayi 已提交
26 27 28 29 30


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
31
        self.python_api = paddle.minimum
F
fengjiayi 已提交
32
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
33 34
        # So we generate test data by the following method
        # to avoid them being too close to each other.
35 36 37
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
38 39 40 41
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
42 43 44 45
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
46 47

    def test_check_grad_normal(self):
48 49 50 51
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
52 53

    def test_check_grad_ingore_x(self):
54 55 56
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
F
fengjiayi 已提交
57 58

    def test_check_grad_ingore_y(self):
59 60 61
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
F
fengjiayi 已提交
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestElementwiseMinOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


94
@skip_check_grad_ci(
95 96
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
97 98 99
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
100
        self.python_api = paddle.minimum
101 102
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
103 104 105 106
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


107
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
108 109
    def setUp(self):
        self.op_type = "elementwise_min"
110
        self.python_api = paddle.minimum
111 112 113
        x = np.random.random((100,)).astype("float64")
        sgn = np.random.choice([-1, 1], (100,)).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100,)).astype("float64")
F
fengjiayi 已提交
114 115 116 117
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


118
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
119 120
    def setUp(self):
        self.op_type = "elementwise_min"
121
        self.python_api = paddle.minimum
122
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
123 124 125 126
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[:, 0, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
127 128 129 130
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
131 132 133
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
F
fengjiayi 已提交
134 135 136
        }


137
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
138 139
    def setUp(self):
        self.op_type = "elementwise_min"
140
        self.python_api = paddle.minimum
141
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
142 143 144 145
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, :, 0] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
146 147 148 149
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
150 151 152
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1)
            )
F
fengjiayi 已提交
153 154 155
        }


156
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
157 158
    def setUp(self):
        self.op_type = "elementwise_min"
159
        self.python_api = paddle.minimum
160
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
161 162 163 164
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
165 166 167
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
168 169 170
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100)
            )
F
fengjiayi 已提交
171 172 173
        }


174
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
175 176
    def setUp(self):
        self.op_type = "elementwise_min"
177
        self.python_api = paddle.minimum
178 179
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
180 181 182
        y = x[0, :, :, 0] + sgn * np.random.uniform(1, 2, (25, 4)).astype(
            np.float64
        )
F
fengjiayi 已提交
183 184 185 186
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
187 188 189
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1)
            )
F
fengjiayi 已提交
190 191 192
        }


193 194 195
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
196
        self.python_api = paddle.minimum
197 198
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
199
        y = x + sgn * np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
200 201 202 203 204
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218
class TestElementwiseMinOpFP16(unittest.TestCase):
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
219
            z = _legacy_C_ops.elementwise_min(x, y, 'axis', axis)
S
sneaxiy 已提交
220
            x_g, y_g = paddle.grad([z], [x, y])
221 222 223 224 225
            return (
                z.numpy().astype(dtype),
                x_g.numpy().astype(dtype),
                y_g.numpy().astype(dtype),
            )
S
sneaxiy 已提交
226 227 228 229 230 231 232 233 234 235 236

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

237 238 239
        z_1, x_g_1, y_g_1 = self.get_out_and_grad(
            x_np, y_np, axis, place, False
        )
S
sneaxiy 已提交
240
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
241 242 243
        np.testing.assert_array_equal(z_1, z_2)
        np.testing.assert_array_equal(x_g_1, x_g_2)
        np.testing.assert_array_equal(y_g_1, y_g_2)
S
sneaxiy 已提交
244 245 246

    def test_main(self):
        self.check_main((13, 17), (13, 17))
247 248 249 250 251
        self.check_main((10, 3, 4), (1,))
        self.check_main((100,), (100,))
        self.check_main((100, 3, 2), (100,), 0)
        self.check_main((2, 100, 3), (100,), 1)
        self.check_main((2, 3, 100), (100,))
S
sneaxiy 已提交
252 253 254 255
        self.check_main((2, 25, 4, 1), (25, 4), 1)
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
256 257
if __name__ == '__main__':
    unittest.main()