smooth_l1_loss_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
Y
yangyaming 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
27 28 29

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
X
xuezhong 已提交
30 31 32 33 34 35 36 37
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims);
    }
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
39
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
40 41 42 43
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
X
xuezhong 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
      auto dims = ctx->GetInputDim("InsideWeight");
      bool check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }

      dims = ctx->GetInputDim("OutsideWeight");
      check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }
Y
yangyaming 已提交
63 64
    }

Q
Qiao Longfei 已提交
65
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
66
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
67
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
68 69 70 71 72
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
73
  void Make() override {
Y
yangyaming 已提交
74
    AddInput("X",
Y
yangyaming 已提交
75 76 77
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
78
    AddInput("Y",
Y
yangyaming 已提交
79 80
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
81
    AddInput("InsideWeight",
Y
yangyaming 已提交
82 83 84
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
85 86
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
87
    AddInput("OutsideWeight",
Y
yangyaming 已提交
88 89 90 91
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
92
        .AsDispensable();
Y
yangyaming 已提交
93
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
94
        .AsIntermediate();
Y
yangyaming 已提交
95 96 97
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
98 99 100 101
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
102
    AddComment(R"DOC(
103 104
Smooth L1 Loss Operator.

Y
yangyaming 已提交
105 106
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
107
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
108
and then sums all the losses. So the shape of Out is [batch_size, 1].
109

Y
yangyaming 已提交
110
The equation is:
Y
yangyaming 已提交
111 112 113 114 115 116 117 118 119 120 121
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
122

Y
yangyaming 已提交
123 124 125 126 127 128 129 130
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

131
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qingqing01 已提交
132
    auto in_dims = ctx->GetInputDim("Diff");
Q
Qiao Longfei 已提交
133
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
134

135
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
136
                      "The tensor rank of Input(Out@Grad) should be 2.");
X
xuezhong 已提交
137 138 139 140 141
    PADDLE_INFERSHAPE_ENFORCE_EQ(ctx, out_dims[0], in_dims[0],
                                 "The 1st dimension of Input(Out@Grad) must be "
                                 "same as input.");
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, out_dims[1], 1, "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
142

Q
Qiao Longfei 已提交
143 144 145 146 147 148 149 150
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
151 152 153
  }
};

Q
qingqing01 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("smooth_l1_loss_grad");
    op->SetInput("InsideWeight", Input("InsideWeight"));
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
    op->SetInput("Diff", Output("Diff"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Y
yangyaming 已提交
175 176 177 178
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
179
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
Q
qingqing01 已提交
180
                  ops::SmoothL1LossGradMaker);
181
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
182
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
183 184
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
185 186
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
187
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);