提交 a5236265 编写于 作者: Y yangyaming

Refine doc for smooth l1 loss op.

上级 4ecbab42
......@@ -22,22 +22,20 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same.");
PADDLE_ENFORCE_EQ(x_dims, y_dims);
PADDLE_ENFORCE_GE(x_dims.size(), 2,
"The tensor rank of X must be at least 2.");
"The tensor rank of Input(X) should not be less than 2.");
if (ctx->HasInput("InsideWeight")) {
PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
"If weights are provided, must specify both "
"inside and outside weights.");
PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims,
"The shape of InsideWeight must be same as X.");
PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims,
"The shape of OutsideWeight must be same as X.");
PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
}
ctx->SetOutputDim("Diff", x_dims);
......@@ -53,25 +51,29 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input tensor of smooth l1 loss op."
"The rank should be greater or equal to 2 with shape "
"[batch_size, value_dim1, value_dim2, ..., value_dimN]");
"(Tensor, default Tensor<float>) A tensor with rank at least 2. "
"The input value of smooth l1 loss op with shape "
"[batch_size, dim1, ..., dimN].");
AddInput("Y",
"The target tensor of smooth l1 loss op "
"with the same shape as X.");
"(Tensor, default Tensor<float>) A tensor with rank at least 2. "
"The target value of smooth l1 loss op with same shape as X.");
AddInput("InsideWeight",
"Optional input tensor of smooth l1 loss op with the same shape "
"as X. If provided, the result of (X - Y) will be multiplied "
"(Tensor, default Tensor<float>) A tensor with rank at least 2. "
"This input is optional and should have same shape with X. "
"If provided, the result of (X - Y) will be multiplied "
"by this tensor element by element.")
.AsDispensable();
AddInput("OutsideWeight",
"Optinal input of smooth l1 loss op with the same shape as X."
"If provided, the output smooth l1 loss will be multiplied by "
"this tensor element by element.")
"(Tensor, default Tensor<float>) A tensor with rank at least 2. "
"This input is optional and should have same shape with X. "
"If provided, the out smooth l1 loss will be multiplied by this "
"tensor element by element.")
.AsDispensable();
AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).")
AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
.AsIntermediate();
AddOutput("Out", "Smooth l1 loss.");
AddOutput("Out",
"(Tensor, default Tensor<float>) A tensor with rank be 2. "
"The output smooth l1 loss with shape [batch_size, 1].");
AddAttr<AttrType>("sigma",
"Hyper parameter of smooth l1 loss op."
"A float scalar with default value 3.0.")
......@@ -79,15 +81,23 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
Smooth L1 Loss Operator.
This operator computes the smooth l1 loss for input and target.
The operator takes the first dimension of input as the batch size.
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
For each instance, it computes the smooth l1 loss element by element first
and then sums all the losses. So the resulting output shape
is [batch_size, 1].
and then sums all the losses. So the shape of Out is [batch_size, 1].
The equation is:
loss = $$0.5 * (\sigma * (x-y))^2$$ if $$|x - y| < 1 /({\sigma}^2)$$
$$\frac{|x - y| - 0.5}{{\sigma}^2}$$ otherwise
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$
In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
)DOC");
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册