smooth_l1_loss_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
Y
yangyaming 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
27 28 29

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
30
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
32
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
33 34 35 36
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
Y
yangyaming 已提交
37 38
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
Y
yangyaming 已提交
39 40
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
42
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
43
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
44 45 46 47 48
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
Y
yangyaming 已提交
50
    AddInput("X",
Y
yangyaming 已提交
51 52 53
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
54
    AddInput("Y",
Y
yangyaming 已提交
55 56
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
57
    AddInput("InsideWeight",
Y
yangyaming 已提交
58 59 60
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
61 62
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
63
    AddInput("OutsideWeight",
Y
yangyaming 已提交
64 65 66 67
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
68
        .AsDispensable();
Y
yangyaming 已提交
69
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
70
        .AsIntermediate();
Y
yangyaming 已提交
71 72 73
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
74 75 76 77
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
78
    AddComment(R"DOC(
79 80
Smooth L1 Loss Operator.

Y
yangyaming 已提交
81 82
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
83
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
84
and then sums all the losses. So the shape of Out is [batch_size, 1].
85

Y
yangyaming 已提交
86
The equation is:
Y
yangyaming 已提交
87 88 89 90 91 92 93 94 95 96 97
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
98

Y
yangyaming 已提交
99 100 101 102 103 104 105 106
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

107
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qingqing01 已提交
108
    auto in_dims = ctx->GetInputDim("Diff");
Q
Qiao Longfei 已提交
109
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
110

111
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
112
                      "The tensor rank of Input(Out@Grad) should be 2.");
Y
yangyaming 已提交
113
    PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
Y
yangyaming 已提交
114 115
                      "The 1st dimension of Input(Out@Grad) must be "
                      "same as input.");
Y
yangyaming 已提交
116
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
Y
yangyaming 已提交
117
                      "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
118

Q
Qiao Longfei 已提交
119 120 121 122 123 124 125 126
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
127 128 129
  }
};

Q
qingqing01 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("smooth_l1_loss_grad");
    op->SetInput("InsideWeight", Input("InsideWeight"));
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
    op->SetInput("Diff", Output("Diff"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Y
yangyaming 已提交
151 152 153 154
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
155
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
Q
qingqing01 已提交
156
                  ops::SmoothL1LossGradMaker);
157
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
158
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
159 160
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
161 162
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
163
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);