smooth_l1_loss_op.cc 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
Y
yangyaming 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

Y
yangyaming 已提交
19 20 21 22 23 24 25
namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
29 30 31

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
X
xuezhong 已提交
32 33 34 35 36 37 38 39
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims);
    }
Q
Qiao Longfei 已提交
40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
41
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
42 43 44 45
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
Y
yangyaming 已提交
46 47
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
Y
yangyaming 已提交
48 49
    }

Q
Qiao Longfei 已提交
50
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
51
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
52
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
53 54 55 56 57
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
58
  void Make() override {
Y
yangyaming 已提交
59
    AddInput("X",
Y
yangyaming 已提交
60 61 62
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
63
    AddInput("Y",
Y
yangyaming 已提交
64 65
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
66
    AddInput("InsideWeight",
Y
yangyaming 已提交
67 68 69
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
70 71
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
72
    AddInput("OutsideWeight",
Y
yangyaming 已提交
73 74 75 76
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
77
        .AsDispensable();
Y
yangyaming 已提交
78
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
79
        .AsIntermediate();
Y
yangyaming 已提交
80 81 82
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
83 84 85 86
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
87
    AddComment(R"DOC(
88 89
Smooth L1 Loss Operator.

Y
yangyaming 已提交
90 91
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
92
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
93
and then sums all the losses. So the shape of Out is [batch_size, 1].
94

Y
yangyaming 已提交
95
The equation is:
Y
yangyaming 已提交
96 97 98 99 100 101 102 103 104 105 106
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
107

Y
yangyaming 已提交
108 109 110 111 112 113 114 115
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

116
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qingqing01 已提交
117
    auto in_dims = ctx->GetInputDim("Diff");
Q
Qiao Longfei 已提交
118
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
119

120
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
121
                      "The tensor rank of Input(Out@Grad) should be 2.");
X
xuezhong 已提交
122 123 124 125 126
    PADDLE_INFERSHAPE_ENFORCE_EQ(ctx, out_dims[0], in_dims[0],
                                 "The 1st dimension of Input(Out@Grad) must be "
                                 "same as input.");
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, out_dims[1], 1, "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
127

Q
Qiao Longfei 已提交
128 129 130 131 132 133 134 135
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
136 137 138
  }
};

Q
qingqing01 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("smooth_l1_loss_grad");
    op->SetInput("InsideWeight", Input("InsideWeight"));
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
    op->SetInput("Diff", Output("Diff"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Y
yangyaming 已提交
160 161 162 163
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
164
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
Q
qingqing01 已提交
165
                  ops::SmoothL1LossGradMaker);
166
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
167
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
168 169
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
170 171
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
172
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);