pybind.cc 53.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
58
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

90 91 92 93 94 95 96 97
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

98
bool IsCompiledWithBrpc() {
99
#ifndef PADDLE_WITH_DISTRIBUTE
100 101
  return false;
#endif
102 103 104 105 106 107

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
108 109
}

Y
update  
Yancey1989 已提交
110
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
111
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
112 113 114 115 116 117
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
118 119 120 121 122
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

123
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
124 125 126
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
127
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
128
  m.doc() = "C++ core of PaddlePaddle";
129

130 131 132 133
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

134
  BindException(&m);
Y
Yu Yang 已提交
135

S
sneaxiy 已提交
136
  m.def(
S
sneaxiy 已提交
137
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
138 139 140 141
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
142 143 144
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

145 146 147 148 149 150 151
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
152 153 154 155 156 157
  m.def("start_imperative_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_profiler",
        []() { imperative::StopProfile(); });

M
minqiyang 已提交
158
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
159 160 161 162 163 164 165 166
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
167
      .def("_run_backward",
X
Xin Pan 已提交
168
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
169
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
170
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
171
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
172
      .def("_grad_ivar",
M
minqiyang 已提交
173
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
174
           py::return_value_policy::reference)
M
minqiyang 已提交
175
      .def("_copy_to",
P
Paddle CI 已提交
176
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
177 178 179 180 181
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
182
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
183
      .def("_copy_to",
P
Paddle CI 已提交
184
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
185 186 187 188 189
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
190
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
191
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
192
           py::return_value_policy::reference)
193 194 195 196 197 198 199 200
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
      .def_property_readonly("dtype", &imperative::VarBase::DType)
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
201

202
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
203
      .def(py::init<const std::string &>())
204 205 206 207
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
208 209 210 211 212 213 214 215 216 217
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
218 219 220 221 222 223
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
224 225 226 227 228 229 230
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
231 232
          py::return_value_policy::reference);

X
Xin Pan 已提交
233
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
234
  layer.def(py::init<>())
X
Xin Pan 已提交
235 236 237
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
238
      });
X
Xin Pan 已提交
239

X
polish  
Xin Pan 已提交
240
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
241
      .def(py::init<>())
X
Xin Pan 已提交
242 243
      .def_static(
          "apply",
X
Xin Pan 已提交
244
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
245
              -> std::vector<imperative::VarBase *> {
246 247 248 249 250 251 252 253 254 255 256
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
257 258
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
259 260 261 262 263
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
264

265 266
  BindTracer(&m);

267 268 269
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
270
      .def("_get_dims",
271
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
272
      .def("_set_dims",
Q
qijun 已提交
273
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
274
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
275
           })
Y
yuyang18 已提交
276
      .def("_set_layout",
D
dzhwinter 已提交
277 278 279
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
280
      .def("_alloc_float",
D
dzhwinter 已提交
281
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
282
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
283
           })
Y
yuyang18 已提交
284
      .def("_alloc_float",
Y
Yu Yang 已提交
285
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
286
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
287
           })
Y
yuyang18 已提交
288
      .def("_alloc_int",
Y
Yu Yang 已提交
289
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
290
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
291
           })
Y
yuyang18 已提交
292
      .def("_alloc_int",
D
dzhwinter 已提交
293
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
294
             self.mutable_data<int>(place);
Q
qijun 已提交
295
           })
Y
yuyang18 已提交
296
      .def("_alloc_int",
C
chengduoZH 已提交
297 298 299
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
300
      .def("_alloc_float",
C
chengduoZH 已提交
301 302 303
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
304 305
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
306
      .def("set", PyCPUTensorSetFromArray<double>)
307
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
308
      .def("set", PyCPUTensorSetFromArray<bool>)
309
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
310
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
311
      .def("set", PyCPUTensorSetFromArray<int8_t>)
312
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
313 314
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
315
      .def("set", PyCUDATensorSetFromArray<double>)
316
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
317
      .def("set", PyCUDATensorSetFromArray<bool>)
318
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
319
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
320
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
321 322 323 324 325 326
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
327
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
328
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
329
#endif
330
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
331 332 333 334
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
335
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
336
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
337

X
Xin Pan 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
351
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
352
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
353
     columns, hence [5, 2].
X
Xin Pan 已提交
354 355 356

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
357 358
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
382 383
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
384 385 386 387 388 389 390 391 392 393 394 395 396 397
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
398
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
399 400 401 402 403
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
404
      .def("set_lod",
405
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
406
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
407
             LoD new_lod;
408 409
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
410 411
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
412
             self.set_lod(new_lod);
S
sneaxiy 已提交
413 414 415 416 417 418 419
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
435 436 437 438
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
439
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
440 441
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
442 443

           Args:
444
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
445
           )DOC")
446 447 448 449 450 451 452 453
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
454 455 456 457 458 459 460
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
461
      // Set above comments of set_lod.
462 463 464 465 466 467 468 469
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
470 471 472 473 474
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
475
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
489

Q
qijun 已提交
490 491 492 493 494 495 496 497 498 499 500
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
501 502
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
503 504
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
505 506 507 508 509 510 511 512 513
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
514
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
515
      .def("rows", [](SelectedRows &self) {
516 517 518 519 520
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
521
      });
Q
qijun 已提交
522

523
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
524 525 526

All parameter, weight, gradient are variables in Paddle.
)DOC")
527
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
528
      .def("set_int",
529 530
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
531 532 533 534 535 536 537
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
538
      .def("get_tensor",
539 540
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
541 542
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
543 544 545
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
546 547 548 549 550
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
551 552 553
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
554
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
555 556 557 558 559
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
560
#endif
Y
Refine  
Yu Yang 已提交
561 562 563 564 565
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
566
           py::return_value_policy::reference);
567

Y
Refine  
Yu Yang 已提交
568
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
569
      .def("start", &framework::ReaderHolder::Start)
570
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
571

S
sneaxiy 已提交
572 573 574 575
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
576 577
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
578
      .def("push",
S
sneaxiy 已提交
579
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
580
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
581
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
582
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
583
           })
S
sneaxiy 已提交
584 585 586 587
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
588

S
sneaxiy 已提交
589
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
590 591 592 593 594 595
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
596
        py::return_value_policy::copy);
S
sneaxiy 已提交
597

S
sneaxiy 已提交
598
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
618 619
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
620
      .def("var",
621
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
622
             return self.Var(name);
Y
Yu Yang 已提交
623
           },
S
sneaxiy 已提交
624 625
           py::arg("name"),
           R"DOC(
626
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
627

628
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
629
           current scope, the variable would be created. Otherwise,
630
           return the existing variable.
S
sneaxiy 已提交
631 632

           Args:
633 634
               name (str): the variable name.

S
sneaxiy 已提交
635
           Returns:
636
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
637 638 639 640
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
641
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
642
           its parent scope. Return None if not found.
643

S
sneaxiy 已提交
644 645
           Args:
               name (str): the variable name.
646

S
sneaxiy 已提交
647
           Returns:
648
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
649
           )DOC",
650
           py::return_value_policy::reference)
651
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
652 653 654 655 656 657
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
658
           py::return_value_policy::reference)
S
sneaxiy 已提交
659 660 661 662
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
663

S
sneaxiy 已提交
664 665 666 667 668 669
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
670 671
        R"DOC(
        Create a new scope.
672

S
sneaxiy 已提交
673 674 675
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
676 677
        py::return_value_policy::reference);

Y
Yu Yang 已提交
678 679
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
680 681
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
682 683 684 685 686 687 688 689 690 691
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
692 693
    return ret_values;
  });
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
710
  m.def("prune", [](const ProgramDesc &origin,
711
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
712
    ProgramDesc prog_with_targets(origin);
713
    for (const auto &t : targets) {
714
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
715
    }
716
    proto::ProgramDesc pruned_desc;
717
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
718
    return new ProgramDesc(pruned_desc);
719
  });
720 721 722 723
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
724 725 726
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
727 728
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
729
  // clang-format off
Y
Yu Yang 已提交
730
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
731 732
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
733
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
734 735 736
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
737
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
738
                      -> paddle::platform::DeviceContext* {
739
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
740
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
741
#else
Q
qijun 已提交
742
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
743
#endif
C
chengduoZH 已提交
744 745 746 747 748 749 750 751 752 753 754
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
755
// clang-format on
P
peizhilin 已提交
756
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
757 758
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
759
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
760 761 762 763 764 765 766 767 768 769 770 771
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
772 773 774 775 776
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
777
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
778

779 780
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
781 782 783 784 785
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
786
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
787

C
chengduoZH 已提交
788
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
789
      .def("__init__",
S
sneaxiy 已提交
790
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
791 792 793
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
794
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
795
           })
S
sneaxiy 已提交
796 797 798 799 800 801 802
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
803 804
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
805 806
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
807 808 809 810
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
811 812 813 814 815 816
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
817 818 819 820 821
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
822
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
823
             self = gpu_place;
C
chengduoZH 已提交
824 825
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
826 827
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
828
      });
Y
Yu Yang 已提交
829

Y
Yu Yang 已提交
830 831 832
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
833
                    proto::OpDesc desc;
Y
Yu Yang 已提交
834 835 836 837 838
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
839
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
840
                  })
841
      .def("run",
842
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
843 844 845
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
846
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
847 848 849 850 851
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
852 853 854 855 856 857 858
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
859 860
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
861
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
862
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
863 864 865 866
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
867

F
fengjiayi 已提交
868
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
869
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
870
      .def("close", &Executor::Close)
S
sneaxiy 已提交
871
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
872 873
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
874
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
875 876
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
877
      });
S
sneaxiy 已提交
878

D
dzhwinter 已提交
879
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
880
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
881 882
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
883

884
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
885
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
886
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
887
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
888 889 890 891 892 893
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
894

895
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
896
  m.def("get_fetch_variable", framework::GetFetchVariable);
897
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
898

X
Xin Pan 已提交
899 900
  m.def("_is_program_version_supported", IsProgramVersionSupported);

901 902 903 904 905
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
906

Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
916
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
917 918
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
919 920 921 922 923 924 925 926 927 928
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
929 930 931 932 933 934 935
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
936

D
dzhwinter 已提交
937 938 939
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
940
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
941
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
942
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
943

P
peizhilin 已提交
944
#ifndef _WIN32
D
dangqingqing 已提交
945 946 947
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
948
#endif
P
peizhilin 已提交
949
#endif
Y
Yu Yang 已提交
950

951 952 953 954
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
955
      .value("kAll", platform::ProfilerState::kAll)
956 957 958 959 960 961 962 963 964 965 966 967 968
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
969
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
970
  m.def("reset_profiler", platform::ResetProfiler);
971
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
972 973 974
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
975

976 977
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
978
      .def("has", &ir::Pass::Has)
979 980 981
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
982
           })
983
      .def(
984
          "set",
985 986 987
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
988 989
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
990 991 992 993
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
994
        optim_graph.release();
F
flame 已提交
995
      });
996

X
fix  
Xin Pan 已提交
997 998
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1013
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1014

Y
yuyang18 已提交
1015
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1016 1017 1018 1019
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1031 1032 1033

        )DOC");

Y
yuyang18 已提交
1034
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1035 1036 1037 1038 1039
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1050
      .def_property(
1051 1052 1053 1054
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1055 1056 1057 1058
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1059 1060 1061 1062 1063
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1064 1065 1066 1067
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1068 1069 1070 1071 1072 1073 1074
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1086 1087 1088 1089 1090 1091
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1092

Y
yuyang18 已提交
1093
  exec_strategy.def_property(
Y
yuyang18 已提交
1094 1095 1096 1097 1098 1099 1100
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1101 1102
      });

C
chengduo 已提交
1103 1104 1105 1106
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1118
)DOC");
Y
yuyang18 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1135
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1136
            self.reduce_ = strategy;
C
chengduo 已提交
1137 1138 1139 1140 1141 1142 1143
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1144 1145 1146 1147 1148
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1149
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1150
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1151 1152 1153 1154 1155 1156
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1157 1158 1159 1160
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1161
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1162
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1163 1164 1165 1166
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1167 1168 1169 1170 1171 1172
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1173
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1183
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1184 1185
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1186
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1187 1188 1189 1190 1191 1192
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1205 1206 1207 1208 1209 1210
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1211
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1212 1213 1214 1215 1216
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1231 1232 1233 1234
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1235 1236 1237 1238
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1239
      .def_property(
D
dzhwinter 已提交
1240 1241 1242
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1243
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1244
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1245 1246 1247 1248 1249
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1250 1251

  pe.def(py::init<const std::vector<platform::Place> &,
X
Xin Pan 已提交
1252
                  const std::unordered_set<std::string> &, const std::string &,
X
Xin Pan 已提交
1253
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1254
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1255 1256 1257 1258
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1259 1260 1261 1262 1263
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1264 1265 1266 1267
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1268 1269 1270 1271 1272 1273
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1274

1275
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1276
  BindAsyncExecutor(&m);
F
flame 已提交
1277 1278
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1279
  BindInferenceApi(&m);
L
Luo Tao 已提交
1280
}
1281
}  // namespace pybind
1282
}  // namespace paddle