attention_lstm_op.cc 17.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
26 27 28
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Assert only one Input(X) of AttentionLSTM.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
29
                 "Assert only one Input(C0) of AttentionLSTM.");
30
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
T
tensor-tang 已提交
31
                 "Assert only one Input(LSTMWeight) of AttentionLSTM.");
32
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
T
tensor-tang 已提交
33
                 "Assert only one Input(LSTMBias) of AttentionLSTM.");
34
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
T
tensor-tang 已提交
35 36
                 "Assert only one Input(AttentionWeight) of AttentionLSTM.");

37
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
38
                 "Assert only one Output(Hidden) of AttentionLSTM.");
39
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
40
                 "Assert only one Output(Cell) of AttentionLSTM.");
41
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
T
tensor-tang 已提交
42
                 "Assert only one Output(AttentionedX) of AttentionLSTM.");
43
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
T
tensor-tang 已提交
44
                 "Assert only one Output(AttentionFCOut) of AttentionLSTM.");
45
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
T
tensor-tang 已提交
46
                 "Assert only one Output(LSTMX) of AttentionLSTM.");
47
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
T
tensor-tang 已提交
48
                 "Assert only one Output(LSTMOUT) of AttentionLSTM.");
T
tensor-tang 已提交
49 50

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
51
  const int M = x_dims[1];
T
tensor-tang 已提交
52 53
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
54 55 56
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
T
update  
tensor-tang 已提交
57 58
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D);
T
tensor-tang 已提交
59 60 61

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
62 63
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
T
tensor-tang 已提交
64 65 66

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
T
tensor-tang 已提交
67 68 69 70
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
  }

71
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
72 73 74 75 76 77
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
78 79 80
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
T
update  
tensor-tang 已提交
81 82 83 84
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
T
tensor-tang 已提交
85

86
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
87 88 89
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
90 91 92 93
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
T
tensor-tang 已提交
94 95
  }

96
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
97 98 99
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
T
update  
tensor-tang 已提交
100 101
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
T
tensor-tang 已提交
102 103
  }

104
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
105 106
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
107
        ctx->HasInput("AttentionScalar"),
T
tensor-tang 已提交
108 109 110
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
111 112
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
T
tensor-tang 已提交
113 114 115
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
116 117
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
118 119 120 121
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
122 123 124 125
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

126
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
127
    const framework::ExecutionContext& ctx) const {
Y
Yu Yang 已提交
128 129
  return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                 ctx.device_context());
T
tensor-tang 已提交
130 131
}

132
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
133 134 135 136 137
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
138 139 140 141 142
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
143
  AddInput("H0",
144 145 146
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
147
      .AsDispensable();
148 149 150 151
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
152 153
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
154 155 156 157 158 159 160 161 162 163
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
164
      .AsDispensable();
165 166 167 168 169 170 171 172 173 174
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
175 176 177 178 179 180
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
181 182 183 184
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
185
      .AsIntermediate();
186 187
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
188
      .AsIntermediate();
189 190 191 192 193 194 195 196 197
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
198 199 200 201 202
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
203
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
204 205 206 207
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
208
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
209 210 211 212 213
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
214
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
215
  AddComment(R"DOC(
216 217 218 219 220 221 222 223 224 225 226 227 228 229
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
230 231 232
)DOC");
}

233 234 235 236
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
237 238
    math::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::avx>(n, y, y);
239
  } else {
T
tensor-tang 已提交
240
    math::vec_relu<T, platform::avx>(n, x, y);
241 242 243
  }
}

T
tensor-tang 已提交
244 245
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
246 247 248 249 250
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
251 252
  math::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                               // exp
253 254 255 256 257
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
258
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
259 260
}

T
tensor-tang 已提交
261
template <typename T>
262
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
263 264
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
265
    using DeviceContext = paddle::platform::CPUDeviceContext;
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
283 284 285 286 287

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
288 289 290 291
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
292 293 294 295 296 297 298 299
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
T
tensor-tang 已提交
300
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, "Input(X)'s lod size must be 1.");
T
tensor-tang 已提交
301 302
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
303

304
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
305 306 307
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
308 309
    if (platform::MayIUse(platform::avx)) {
      math::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
310 311 312 313
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
T
tensor-tang 已提交
314
      math::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
315 316 317 318
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
319

T
tensor-tang 已提交
320
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
321
    const T* h0_data = h0 ? h0->data<T>() : NULL;
322 323 324 325 326 327 328 329 330
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
331 332 333 334 335 336
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
337 338 339

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
340
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
341 342
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
343
    const T* cur_atten_x_data = atted_x_data;
344 345 346 347 348
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
349
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
350
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
351
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
352
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
353
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
354 355
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
356
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
357 358 359
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
360
        if (atten_scalar_data) {
T
tensor-tang 已提交
361
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
362 363 364
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
365
        // 1d. softmax
T
tensor-tang 已提交
366
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
367 368 369 370
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
371
        /// 2. compute LSTM step
372 373 374 375 376 377 378 379 380 381 382 383 384
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
385
        act_gate(D3, lstm_out_data, lstm_out_data);
386
        // candicate act: tanh
387
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
388 389 390 391 392

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
393
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
394 395 396 397 398

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
399
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
400
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
401

T
tensor-tang 已提交
402
        prev_hidden_data = cur_hidden_out_data;
403 404 405
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
406
      }
407
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
408
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
409 410 411 412 413 414 415 416
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
417 418
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
419 420
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
421 422
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);