attention_lstm_op.cc 16.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"

23 24
#include "paddle/fluid/operators/math/cpu_vec.h"

T
tensor-tang 已提交
25 26 27
namespace paddle {
namespace operators {

28
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                 "Output(BatchedGate) of LSTM should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

62 63 64
  // fc_out , shape (maxseqlen,1)
  int max_seq_len = 0;

T
tensor-tang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);

  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

  int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
}

111
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
112 113 114 115 116 117
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

118
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
119 120 121 122 123
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
124 125 126 127 128
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
129
  AddInput("H0",
130 131 132
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
133
      .AsDispensable();
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
  AddInput("AttentionBias, optional",
           "(Tensor) the bias of attention fc."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
150
      .AsDispensable();
151 152 153 154 155 156 157 158 159 160
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
161 162 163 164 165 166
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
167 168 169 170 171
  AddOutput(
      "AttentionedX",
      "(LodTensor) shape is (T x 1), the result after X * AttentionWeight,"
      " where T is the total time steps in this mini-batch,"
      " D is the hidden size.")
T
tensor-tang 已提交
172
      .AsIntermediate();
173 174
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
175
      .AsIntermediate();
176 177 178 179 180 181 182 183 184 185
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
  // TODO(TJ): InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
186 187 188 189 190
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
191
      .InEnum({"sigmoid"});
T
tensor-tang 已提交
192 193 194 195
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
196
      .InEnum({"tanh"});
T
tensor-tang 已提交
197 198 199 200 201
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
202
      .InEnum({"tanh"});
T
tensor-tang 已提交
203
  AddComment(R"DOC(
204 205 206 207 208 209 210 211 212 213 214 215 216 217
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
218 219 220
)DOC");
}

221 222 223 224 225 226 227 228 229 230 231 232 233
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
    for (int i = 0; i < n; ++i) {
      y[i] = x[i] + bias[0];
    }
    vec_relu(n, y, y);
  } else {
    vec_relu(n, x, y);
  }
}

T
tensor-tang 已提交
234
template <typename DeviceContext, typename T>
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
inline void vec_softmax(const BlasT<DeviceContext, T>& blas, const int n,
                        const T* x, T* y) {
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }

  // sub
  for (int i = 0; i < n; ++i) {
    y[c] = x[c] - alpha;
  }

  // exp
  blas.VEXP(n, y, y);

  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }

  // scale
  blas.VSCAL(n, static_cast<T>(1) / scalar, y);
}

__m256 exp(__m256 a) { return exp256_ps(a); }

__m256 log(__m256 a) { return log256_ps(a); }

__m256 sin(__m256 a) { return sin256_ps(a); }

__m256 cos(__m256 a) { return cos256_ps(a); }

__m256 relu(const __m256 a) {
  __m256 tmp = _mm256_set1_ps(0.0f);
  return _mm256_max_ps(a, tmp);
}

__m256 sigmoid(const __m256 a) {
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 tmp = _mm256_max_ps(a, min);
  tmp = _mm256_min_ps(tmp, max);
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp);
  tmp = exp(tmp);
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp);
  return tmp;
}

__m256 tanh(const __m256 a) {
  __m256 max = _mm256_set1_ps(EXP_MAX_INPUT);
  __m256 tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), a);
  tmp = _mm256_min_ps(tmp, max);
  tmp = exp(tmp);
  return _mm256_sub_ps(_mm256_div_ps(_mm256_set1_ps(2.0f),
                                     _mm256_add_ps(_mm256_set1_ps(1.0f), tmp)),
                       _mm256_set1_ps(1.0f));
}

__m256 linear(const __m256 a) { return a; }

inline void vec_sigmoid(const T* x, T* y) {
  const real min = SIGMOID_THRESHOLD_MIN;
  const real max = SIGMOID_THRESHOLD_MAX;
  real tmp = (a < min) ? min : ((a > max) ? max : a);
  return 1.0 / (1.0 + exp(-tmp));
T
tensor-tang 已提交
303 304 305
}

template <typename DeviceContext, typename T>
306
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
307 308
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    auto* x = ctx.Input<LoDTensor>("X");                        // T x M
    auto* h0 = ctx.Input<Tensor>("H0");                         // N x D
    auto* c0 = ctx.Input<Tensor>("C0");                         // N x D
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");       // (M+D) x 1
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");         // 1x1
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");  // (D+M) x D*4
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");    // 1 x D*4

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");     // TxD
    auto* cell_out = ctx.Output<LoDTensor>("Cell");         // TxD
    auto* atted_x = ctx.Output<LoDTensor>("AttentionedX");  // T x 1
    auto* fc_out = ctx.Output<Tensor>('AttentionFCOut');    // max_seq_len x 1
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");             // 1 x M
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");         // 1 x 4D
T
tensor-tang 已提交
325 326

    const T* x_data = x->data<T>();
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    const T* h0_data = h0->data<T>();
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

    T* hidden_out_data = hidden_out->mutable_data<T>();
    T* cell_out_data = cell_out->mutable_data<T>();
    T* atted_x_data = atted_x->mutable_data<T>();
    T* fc_out_data = fc_out->mutable_data<T>();
    T* lstm_x_data = lstm_x->mutable_data<T>();
    T* lstm_out_data = lstm_out->mutable_data<T>();

    auto x_lod = x->lod();
    auto x_dims = x->dims();      // T x M
    auto w_dims = w->dims();      // (D+M) x 4D
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    const int batch_size = x_lod[0].size() - 1;  // assert lod.size() == 1

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, T, 1, M, x_data, atten_w_data,
                                      atted_x_data, atten_b_data);

    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
    for (int i = 0; i < batch_size; ++i) {
      int seq_len = x_lod[0][i + 1];
      prev_cell_data = c0_data + i * D;
      prev_hidden_data = h0 ? h0_data + i * D : NULL;

      for (int step = 0; step < seq_len; ++step) {
        /// compute attention vector
        // prev_cell(1xD) * fc(D) rest part of atten_wgt
        // T  = cblas_dot();
        T prev_cell_bias = blas.VDOT(D, prev_cell_data, atten_w_data + M);
        // add cell bias and relu
        bias_relu<T>(seq_len, atted_x_data, &prev_cell_bias, fc_out_data);
        // fc2: scalar
        if (atten_scalar_data) {
          // x = a*x
          blas.VSCAL(seq_len, atten_scalar_data, fc_out_data);
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
        vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

        /// compute LSTM step
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
        vec_sigmoid(D3, lstm_out_data, lstm_out_data);
        // candicate act: tanh
        vec_tanh(D, lstm_out_data + D3, lstm_out_data + D3);

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
        blas.VMUL(D, lstm_out_data + D, lstm_out + D3, lstm_out_data + D);

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
        vec_tanh(D, cur_cell_out_data, lstm_out_data);
        blas.VMUL(D, lstm_out_data, lstm_out + D2, cur_hidden_out_data);

        prev_hidden_data = hidden_out + i * gate_size;
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
423
      }
424
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
425 426 427 428 429 430 431 432
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
433 434
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
435 436 437
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(
438 439 440
    attention_lstm,
    ops::AttentionLSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AttentionLSTMKernel<paddle::platform::CPUDeviceContext, double>);