attention_lstm_op.cc 17.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
26 27 28
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Assert only one Input(X) of AttentionLSTM.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
29
                 "Assert only one Input(C0) of AttentionLSTM.");
30
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
T
tensor-tang 已提交
31
                 "Assert only one Input(LSTMWeight) of AttentionLSTM.");
32
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
T
tensor-tang 已提交
33
                 "Assert only one Input(LSTMBias) of AttentionLSTM.");
34
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
T
tensor-tang 已提交
35 36
                 "Assert only one Input(AttentionWeight) of AttentionLSTM.");

37
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
38
                 "Assert only one Output(Hidden) of AttentionLSTM.");
39
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
40
                 "Assert only one Output(Cell) of AttentionLSTM.");
41
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
T
tensor-tang 已提交
42
                 "Assert only one Output(AttentionedX) of AttentionLSTM.");
43
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
T
tensor-tang 已提交
44
                 "Assert only one Output(AttentionFCOut) of AttentionLSTM.");
45
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
T
tensor-tang 已提交
46
                 "Assert only one Output(LSTMX) of AttentionLSTM.");
47
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
T
tensor-tang 已提交
48
                 "Assert only one Output(LSTMOUT) of AttentionLSTM.");
T
tensor-tang 已提交
49 50

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
51
  const int M = x_dims[1];
T
tensor-tang 已提交
52 53
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
54 55 56
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
T
tensor-tang 已提交
57 58 59 60
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                      "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D);
  }
T
tensor-tang 已提交
61 62 63

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
tensor-tang 已提交
64 65 66 67 68
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
    PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.",
                      4 * D);
  }
T
tensor-tang 已提交
69 70 71

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
T
tensor-tang 已提交
72 73 74 75
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
  }

76
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
77 78 79 80 81 82
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
83 84 85
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
T
tensor-tang 已提交
86 87 88 89 90 91 92
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                      "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
    PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                      "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  }

93
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
94 95 96
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
T
tensor-tang 已提交
97 98 99 100 101 102
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                        "AttentionBias shapes must be 1 * 1.");
      PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                        "AttentionBias shapes must be 1 * 1.");
    }
T
tensor-tang 已提交
103 104
  }

105
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
106 107 108
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
T
tensor-tang 已提交
109 110 111 112
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
      PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
    }
T
tensor-tang 已提交
113 114
  }

115
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
116 117
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
118
        ctx->HasInput("AttentionScalar"),
T
tensor-tang 已提交
119 120 121
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
T
tensor-tang 已提交
122 123 124 125 126 127
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(dims[0], 1,
                        "AttentionScalarBias shapes must be 1 * 1.");
      PADDLE_ENFORCE_EQ(dims[1], 1,
                        "AttentionScalarBias shapes must be 1 * 1.");
    }
T
tensor-tang 已提交
128 129 130
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
131 132
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
133 134 135 136
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
137 138 139 140
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

141
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
142
    const framework::ExecutionContext& ctx) const {
Y
Yu Yang 已提交
143 144
  return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                 ctx.device_context());
T
tensor-tang 已提交
145 146
}

147
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
148 149 150 151 152
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
153 154 155 156 157
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
158
  AddInput("H0",
159 160 161
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
162
      .AsDispensable();
163 164 165 166
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
167 168
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
169 170 171 172 173 174 175 176 177 178
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
179
      .AsDispensable();
180 181 182 183 184 185 186 187 188 189
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
190 191 192 193 194 195
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
196 197 198 199
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
200
      .AsIntermediate();
201 202
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
203
      .AsIntermediate();
204 205 206 207 208 209 210 211 212
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
213 214 215 216 217
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
218
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
219 220 221 222
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
223
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
224 225 226 227 228
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
229
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
230
  AddComment(R"DOC(
231 232 233 234 235 236 237 238 239 240 241 242 243 244
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
245 246 247
)DOC");
}

248 249 250 251
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
252 253
    math::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::avx>(n, y, y);
254
  } else {
T
tensor-tang 已提交
255
    math::vec_relu<T, platform::avx>(n, x, y);
256 257 258
  }
}

T
tensor-tang 已提交
259 260
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
261 262 263 264 265
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
266 267
  math::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                               // exp
268 269 270 271 272
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
273
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
274 275
}

T
tensor-tang 已提交
276
template <typename T>
277
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
278 279
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
280
    using DeviceContext = paddle::platform::CPUDeviceContext;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
298 299 300 301 302

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
303 304 305 306
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
307 308 309 310 311 312 313 314
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
T
tensor-tang 已提交
315
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, "Input(X)'s lod size must be 1.");
T
tensor-tang 已提交
316 317
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
318

319
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
320 321 322
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
323 324
    if (platform::MayIUse(platform::avx)) {
      math::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
325 326 327 328
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
T
tensor-tang 已提交
329
      math::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
330 331 332 333
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
334

T
tensor-tang 已提交
335
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
336
    const T* h0_data = h0 ? h0->data<T>() : NULL;
337 338 339 340 341 342 343 344 345
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
346 347 348 349 350 351
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
352 353 354

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
355
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
356 357
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
358
    const T* cur_atten_x_data = atted_x_data;
359 360 361 362 363
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
364
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
365
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
366
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
367
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
368
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
369 370
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
371
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
372 373 374
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
375
        if (atten_scalar_data) {
T
tensor-tang 已提交
376
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
377 378 379
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
380
        // 1d. softmax
T
tensor-tang 已提交
381
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
382 383 384 385
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
386
        /// 2. compute LSTM step
387 388 389 390 391 392 393 394 395 396 397 398 399
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
400
        act_gate(D3, lstm_out_data, lstm_out_data);
401
        // candicate act: tanh
402
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
403 404 405 406 407

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
408
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
409 410 411 412 413

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
414
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
415
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
416

T
tensor-tang 已提交
417
        prev_hidden_data = cur_hidden_out_data;
418 419 420
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
421
      }
422
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
423
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
424 425 426 427 428 429 430 431
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
432 433
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
434 435
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
436 437
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);