attention_lstm_op.cc 17.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
19 20
// #include "paddle/fluid/operators/math/detail/activation_functions.h"
// #include "paddle/fluid/operators/math/cpu_vec.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
                 "Input(C0) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
                 "Input(LSTMWeight) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
                 "Input(LSTMBias) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
                 "Input(AttentionWeight) of AttentionLSTM should not be null.");

T
tensor-tang 已提交
37
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
38
                 "Output(Hidden) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
39
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
40 41 42 43 44 45 46 47 48
                 "Output(Cell) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
                 "Output(AttentionedX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
                 "Output(AttentionFCOut) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
                 "Output(LSTMX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
                 "Output(LSTMOUT) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
49 50

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
51
  const int M = x_dims[1];
T
tensor-tang 已提交
52 53
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D + M, 4 * D);

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x (%d + %d).", M,
                    D);
  PADDLE_ENFORCE_EQ(b_dims[1], M + D, "LSTMBias dims should be 1 x (%d + %d).",
                    M, D);

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
70 71 72 73 74 75 76
  if (ctx->HasInput("H0")) {
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  if (ctx->HasInput("AttentionBias")) {
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalar")) {
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalarBias")) {
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
        ctx->HasInput("AttentionScalar"),
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
114 115
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
116 117 118 119
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
120 121 122 123
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

124
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
125 126 127 128 129 130
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

131
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
132 133 134 135 136
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
137 138 139 140 141
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
142
  AddInput("H0",
143 144 145
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
146
      .AsDispensable();
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
  AddInput("AttentionBias, optional",
           "(Tensor) the bias of attention fc."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
163
      .AsDispensable();
164 165 166 167 168 169 170 171 172 173
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
174 175 176 177 178 179
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
180 181 182 183
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
184
      .AsIntermediate();
185 186
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
187
      .AsIntermediate();
188 189 190 191 192 193 194 195 196 197
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
  // TODO(TJ): InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
198 199 200 201 202
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
203
      .InEnum({"sigmoid"});
T
tensor-tang 已提交
204 205 206 207
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
208
      .InEnum({"tanh"});
T
tensor-tang 已提交
209 210 211 212 213
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
214
      .InEnum({"tanh"});
T
tensor-tang 已提交
215
  AddComment(R"DOC(
216 217 218 219 220 221 222 223 224 225 226 227 228 229
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
230 231 232
)DOC");
}

T
tensor-tang 已提交
233 234 235 236 237 238 239
template <typename T>
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

240 241 242 243 244 245 246
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
    for (int i = 0; i < n; ++i) {
      y[i] = x[i] + bias[0];
    }
T
tensor-tang 已提交
247
    vec_relu<T>(n, y, y);
248
  } else {
T
tensor-tang 已提交
249
    vec_relu<T>(n, x, y);
250 251 252
  }
}

T
tensor-tang 已提交
253
template <typename DeviceContext, typename T>
T
tensor-tang 已提交
254
inline void vec_softmax(const math::BlasT<DeviceContext, T>& blas, const int n,
255 256 257 258 259 260 261 262 263
                        const T* x, T* y) {
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }

  // sub
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
264
    y[i] = x[i] - scalar;
265 266 267 268 269 270 271 272 273 274 275 276
  }

  // exp
  blas.VEXP(n, y, y);

  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }

  // scale
T
tensor-tang 已提交
277
  blas.SCAL(n, static_cast<T>(1) / scalar, y);
278 279
}

T
tensor-tang 已提交
280 281 282
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
283

T
tensor-tang 已提交
284 285 286
template <typename T>
inline T sigmoid(T x) {
  return 1. / (1. + exp(-x));
287 288
}

T
tensor-tang 已提交
289 290 291
template <typename T>
inline T tanh(T x) {
  return 2. * sigmoid(2. * x) - 1.;
292 293
}

T
tensor-tang 已提交
294 295 296 297 298 299 300 301
template <typename T>
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 1.0 / (1.0 + std::exp(-tmp));
  }
302 303
}

T
tensor-tang 已提交
304 305 306 307 308
template <typename T>
inline void vec_tanh(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = tanh<T>(x[i]);
  }
T
tensor-tang 已提交
309 310
}

T
tensor-tang 已提交
311
template <typename T>
312
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
313 314
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
315
    using DeviceContext = paddle::platform::CPUDeviceContext;
316 317 318 319 320 321 322 323 324 325
    auto* x = ctx.Input<LoDTensor>("X");                        // T x M
    auto* h0 = ctx.Input<Tensor>("H0");                         // N x D
    auto* c0 = ctx.Input<Tensor>("C0");                         // N x D
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");       // (M+D) x 1
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");         // 1x1
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalar");  // 1x1
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");  // (D+M) x D*4
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");    // 1 x D*4

T
tensor-tang 已提交
326 327 328
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");   // TxD
    auto* cell_out = ctx.Output<LoDTensor>("Cell");       // TxD
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");   // T x 1
T
tensor-tang 已提交
329
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");  // max_seq_len x 1
T
tensor-tang 已提交
330 331 332 333 334 335 336
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");           // 1 x M
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");       // 1 x 4D

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
337 338 339 340
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
341 342 343 344 345 346 347 348 349 350 351
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
352

T
tensor-tang 已提交
353 354
    // TODO(TJ): act functor init here

T
tensor-tang 已提交
355
    const T* x_data = x->data<T>();
356 357 358 359 360 361 362 363 364 365
    const T* h0_data = h0->data<T>();
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
366 367 368 369 370 371
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
372 373 374

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
375
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
376 377 378 379 380 381 382
                                      atted_x_data, atten_b_data);

    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
383
    for (int i = 0; i < N; ++i) {
384 385 386 387 388 389 390 391
      int seq_len = x_lod[0][i + 1];
      prev_cell_data = c0_data + i * D;
      prev_hidden_data = h0 ? h0_data + i * D : NULL;

      for (int step = 0; step < seq_len; ++step) {
        /// compute attention vector
        // prev_cell(1xD) * fc(D) rest part of atten_wgt
        // T  = cblas_dot();
T
tensor-tang 已提交
392
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
393 394 395 396 397
        // add cell bias and relu
        bias_relu<T>(seq_len, atted_x_data, &prev_cell_bias, fc_out_data);
        // fc2: scalar
        if (atten_scalar_data) {
          // x = a*x
T
tensor-tang 已提交
398
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
        vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

        /// compute LSTM step
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
        vec_sigmoid(D3, lstm_out_data, lstm_out_data);
        // candicate act: tanh
        vec_tanh(D, lstm_out_data + D3, lstm_out_data + D3);

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
429
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
430 431 432 433 434 435

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
        vec_tanh(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
436
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
437

T
tensor-tang 已提交
438
        prev_hidden_data = cur_hidden_out_data;
439 440 441
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
442
      }
443
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
444 445 446 447 448 449 450 451
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
452 453
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
454 455
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
456 457
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);