reducer.cc 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18 19 20 21 22 23 24 25 26
#include <iostream>

#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/string/string_helper.h"

#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"

#include "paddle/fluid/imperative/parallel_context.h"

27 28 29
namespace paddle {
namespace imperative {

30 31
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL)
32 33 34 35 36 37 38 39 40
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
  framework::Tensor *tensor =
      is_sparse_
          ? sparse_contents_->GetMutable<framework::SelectedRows>()
                ->mutable_value()
          : dense_contents_.GetMutable<framework::LoDTensor>();

  if (platform::is_gpu_place(tensor->place())) {
41
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
42 43 44 45 46 47 48 49 50 51 52 53 54
    DivNRanks(tensor, nranks, context);
#endif
  } else if (platform::is_cpu_place(tensor->place())) {
    framework::VisitDataTypeSmall(
        dtype_, DivNRanksForAllReduce<platform::CPUDeviceContext>(
                    tensor, nranks, context));
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
  }
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
97
    case framework::proto::VarType::FP16:
98 99
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
100 101
      break;
    case framework::proto::VarType::FP32:
102 103
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
104 105
      break;
    case framework::proto::VarType::FP64:
106 107
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
108 109 110 111 112
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
113
          framework::DataTypeToString(type)));
114 115 116 117
  }
}

// context is used to select the stream for split
118 119 120 121 122 123
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
124
    case framework::proto::VarType::FP16:
125 126
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
127 128
      break;
    case framework::proto::VarType::FP32:
129 130
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
131 132
      break;
    case framework::proto::VarType::FP64:
133 134
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
135 136 137 138 139
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
140 141 142 143
          framework::DataTypeToString(type)));
  }
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

207 208 209
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
210
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
211 212 213 214 215 216 217
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
218 219 220 221 222 223 224 225 226 227
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
228 229 230 231 232 233 234 235 236 237 238 239 240 241
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
242
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
243 244 245 246 247 248 249
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
250 251 252 253 254 255 256 257 258 259
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
260 261 262 263 264 265 266 267
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
268 269 270 271 272
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
273
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

289 290 291
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
292
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
293 294
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
295 296 297
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
298
      parallel_ctx_(parallel_ctx),
299 300
      group_size_limits_(group_size_limits),
      find_unused_vars_(find_unused_vars) {
301
  VLOG(3) << "Start construct the Reducer ...";
302
  nrings_ = parallel_ctx->GetNRings();
303
  nranks_ = parallel_ctx->GetNRanks();
304 305 306 307
#ifdef PADDLE_WITH_XPU_BKCL
  comm_pool_.reset(new ::ThreadPool(1));
  comm_op_count_ = 0;
#endif
308 309
  // initialize groups
  InitializeGroups(group_indices);
310 311
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
312 313
    auto var = vars_[global_var_index];
    var->SharedVar()->AddGradVarLeafBackwardHook(
314 315
        std::unique_ptr<LambdaGradAccumulatorPostHook>(
            new LambdaGradAccumulatorPostHook([=](VariableWrapper *grad) {
316
              this->AddDistHook(global_var_index);
317
            })));
318
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
319 320 321
  }
}

322
void Reducer::InitializeDenseGroups(
323 324 325 326 327 328 329 330
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
    const auto var_name = var->Name();
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
331
                          "Tensor %s's GRAD must be LoDTensor, but received "
332 333 334 335 336 337
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
338
                          "Tensor %s is not initialized.", var_name));
339 340 341
    auto size = lod_tensor->numel();
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
342
                     "The number of tensor %s's elements is 0.", var_name));
343 344 345 346
    all_length += size;

    p_group->length_.push_back(size);

347 348 349
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    // check the dtype and place, it must be same.
    auto dtype = var->DataType();
    auto place = var->Place();
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
371
  p_group->all_length_ = all_length;
372 373 374 375 376
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
377
// Then specify the actual memory in MarkDenseVarReady.
378 379 380 381 382 383
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
384 385
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
386 387 388 389 390 391 392

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
393
            "The number of group[%d]'s elements is 0.", group_index));
394 395 396 397 398 399 400 401 402 403 404
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
405
      InitializeDenseGroups(variable_indices_, &group);
406 407 408
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
      tensor->Resize(framework::make_ddim({group.all_length_}))
          .mutable_data(place_, group.dtype_);
409
    }
410 411 412

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
413
    for (const auto var_index : variable_indices_) {
414 415 416 417 418 419
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
420
    groups_.emplace_back(std::move(group));
421 422 423
    // Debug Message For Reducer
    VLOG(3) << "The Group[" << group_index << "]:";
    VLOG(3) << groups_.back();
424 425 426
  }
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    for (auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
    }

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

462 463
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
464 465
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
466 467 468 469
  VLOG(3) << "start reseting count..";
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
470
    group.sparse_contents_ = nullptr;
471
  });
472 473 474 475

  PADDLE_ENFORCE_EQ(
      all_group_ready_, false,
      platform::errors::PreconditionNotMet(
476
          "Please note that all forward outputs derived from the module "
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;
  if (!find_unused_vars_) {
    return;
  }

  // TODO(shenliang03) "find_unused_vars" interface will be exposed in the
  // future to handle control flow to process unused parameters
  find_unused_vars_ = false;

  unused_vars_.clear();
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      cur_op.EnforceHasInOut();
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
556 557 558 559 560
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
561
// MarkDenseVarReady. Find the position of the corresponding group
562 563 564 565 566
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
567 568 569 570 571 572 573 574 575 576 577 578 579 580
void Reducer::AddDistHook(size_t var_index) {
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (auto unused_index : unused_vars_) {
      if (NeedRebuildGroup()) {
        rebuild_vars_.push_back(vars_[unused_index]);
        rebuild_var_indices_.push_back(unused_index);
      }
      MarkVarReady(unused_index, false);
    }
  }
581

582
  if (NeedRebuildGroup()) {
583 584 585
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
586 587
  MarkVarReady(var_index, true);
}
588

589 590 591 592 593
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
  all_group_ready_ = true;
  const auto &var_locator = variable_locators_[var_index];
  auto group_index = var_locator.group_index;
  auto &group = groups_[group_index];
594

595 596 597 598 599 600 601 602 603 604 605
  if (!group.is_sparse_) {
    // process dense group
    auto inside_group_index = var_locator.inside_group_index;
    auto length = group.length_[inside_group_index];
    auto &group_tensor = group.dense_tensors_[inside_group_index];
    if (is_used_var) {
      auto var_warpper = vars_[var_index]->GradVarBase()->SharedVar();
      auto tensor =
          var_warpper->MutableVar()->GetMutable<framework::LoDTensor>();
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
606
    } else {
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(place_, group.dtype_);
#ifdef PADDLE_WITH_XPU_BKCL
        if (platform::is_xpu_place(group_tensor.place())) {
          // TODO(liuyuhui) support XPU set constant
          VLOG(3) << "XPU doesn't support set_constant";
        }
#else
        auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
        operators::math::set_constant(*dev_ctx, &group_tensor, 0.0);
#endif
      }
    }
  } else {
    // process sparse group
    if (is_used_var) {
      auto var_warpper = vars_[var_index]->GradVarBase()->SharedVar();
625
      group.sparse_contents_ = var_warpper->MutableVar();
626 627
    } else {
      group.sparse_contents_ = nullptr;
628 629
    }
  }
630

631 632 633 634 635 636 637 638 639 640
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

641 642
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as same as multi gpus card trainging.
643 644
void Reducer::MarkGroupReady(size_t group_index) {
  if (group_index > next_group_) {
645
    VLOG(3) << "It will adjust the order of group in next batch automatically";
646 647 648 649 650 651
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    auto &group = groups_[next_group_];
652
    int run_order = next_group_ % nrings_;
653 654 655 656 657 658 659

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#ifdef PADDLE_WITH_XPU_BKCL
    {
      std::lock_guard<std::mutex> lock(mutex_);
      comm_op_count_ += 1;  // lock
    }
    // TODO(liuyuhui): Add try catch to deal with exception later,
    // otherwise the main thread will continue to run when an exception is
    // thrown in comm_pool_.
    comm_pool_->enqueue([&] {
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place_).device;
      platform::SetXPUDeviceId(dev_id);
      FusedAllReduceSchedule(run_order, group);
      {
        std::lock_guard<std::mutex> lock(mutex_);
        comm_op_count_ -= 1;  // lock
        cv_.notify_all();
676
      }
677 678 679 680 681 682 683 684 685 686 687 688 689 690
    });
#elif defined(PADDLE_WITH_NCCL)
    FusedAllReduceSchedule(run_order, group);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not compiled with BKCL or NCCL."));
#endif
  }
}

void Reducer::FusedAllReduceSchedule(int run_order, Group &group) {
  if (group.is_sparse_) {
    if (group.sparse_contents_ != nullptr) {
      VLOG(3) << "sparse group [" << next_group_ << "] start allreduce in ring["
691
              << run_order << "]";
692 693 694 695 696 697 698 699 700 701 702 703 704
      group.DivNRanks(*parallel_ctx_->GetDeviceContext(run_order), nranks_);
      parallel_ctx_->AllReduceByStream(
          *group.sparse_contents_, group.sparse_contents_, run_order, false);
    } else {
      VLOG(3) << "The sparse group[" << next_group_
              << "] has no var to allreduce";
    }
  } else {
    VLOG(3) << "dense group [" << next_group_ << "] start allreduce in ring["
            << run_order << "]";
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
    group.ConcatTensors(*parallel_ctx_->GetDeviceContext(run_order));
705

706
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
707 708
// default stream for communicating, so there exist some problems in
// synchronization. And need to add a WaitComm there.
709 710
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as multi gpus card trainging.
711
#ifdef PADDLE_WITH_XPU_BKCL
712 713 714
    if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
      parallel_ctx_->WaitComm(run_order);
    }
715
#endif
716
    group.DivNRanks(*parallel_ctx_->GetDeviceContext(run_order), nranks_);
717

718 719 720
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
721

722 723 724
    // Select common commstream to split tensors
    // group.dense_contents_ ---> group.dense_tensors
    group.SplitTensors(*parallel_ctx_->GetDeviceContext(run_order));
725 726 727
  }
}

728
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
729 730 731 732 733 734 735 736 737
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
738 739 740 741 742 743 744 745 746 747 748 749
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

750
void Reducer::FinalizeBackward() {
751
  all_group_ready_ = false;
752 753 754 755 756 757
#ifdef PADDLE_WITH_XPU_BKCL
  {
    std::unique_lock<std::mutex> lock(mutex_);
    cv_.wait(lock, [&] { return comm_op_count_ == 0; });
  }
#endif
758 759
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
760
    parallel_ctx_->WaitComm(i);
761 762
  }

763
  if (NeedRebuildGroup()) {
764 765 766 767 768
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
769

770 771 772 773 774 775 776 777 778 779 780 781 782
  VLOG(3) << "In the batch, Reducer is finished...";
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
783 784
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
785 786 787 788 789
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
805 806 807 808 809 810 811 812 813 814 815 816 817 818
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
819 820 821 822 823 824 825

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
826
      // we keep sparse var a single group
827
      res.push_back({tensor_real_index});
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
844
    group_info.first.push_back(tensor_real_index);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
875 876 877 878 879 880
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
881 882 883 884 885 886
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle