operator.h 12.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69 70 71 72 73

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;

Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

83
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
84 85 86

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
87
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
90
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
91 92
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
93 94
  virtual bool IsNetOp() const { return false; }

95 96
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
97 98 99
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
100 101
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
102
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
104
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
105
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
106

Y
Yu Yang 已提交
107
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
108
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
109 110
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
112

Y
Yu Yang 已提交
113
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
114

Q
qiaolongfei 已提交
115
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
116
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
117 118
  const AttributeMap& Attrs() const { return attrs_; }

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121 122 123 124
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

133 134
class NOP : public OperatorBase {
 public:
135
  using OperatorBase::OperatorBase;
136 137 138 139 140
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

167 168
    VariableBuilder& NotInGradient() {
      var_->set_not_in_gradient(true);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

206
class InferShapeContext {
Y
Yan Chunwei 已提交
207
 public:
208 209
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
210

Y
Yu Yang 已提交
211
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
212
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
213 214
  }

Y
Yu Yang 已提交
215
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
216
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
217 218
  }

219
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
220
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
221 222
  }

223
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
224
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
225 226
  }

227 228
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
229 230
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
231
    res.reserve(names.size());
Y
Yan Chunwei 已提交
232
    std::transform(
233
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
234
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
235 236 237
    return res;
  }

238
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
239 240
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
241
    res.reserve(names.size());
Y
Yan Chunwei 已提交
242
    std::transform(
243
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
244
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
245 246 247
    return res;
  }

248 249
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
250
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
251
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
252
    return &var->Get<T>();
253 254 255 256
  }

  template <typename T>
  T* Output(const std::string& name) const {
257
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
258
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
259
    return var->GetMutable<T>();
260 261 262 263 264 265 266 267
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
268
                   [&](const std::string& sub_name) {
269
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
270 271 272
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
273
                     return &var->Get<T>();
274 275 276 277 278 279 280 281 282 283
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
284
                   [&](const std::string& sub_name) {
285
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
286
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
287
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
288
                         sub_name);
289
                     return var->GetMutable<T>();
290 291 292 293 294
                   });
    return res;
  }

  const OperatorBase& op_;
295
  const Scope& scope_;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

313
class ExecutionContext : public InferShapeContext {
314
 public:
315
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
316
                   const platform::DeviceContext* device_context)
317
      : InferShapeContext(op, scope), device_context_(device_context) {}
318

Q
qijun 已提交
319 320 321
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
322
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
323

D
dongzhihong 已提交
324
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
325

Q
qijun 已提交
326
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
327
    return device_context_;
Q
qijun 已提交
328
  }
Q
qijun 已提交
329

D
dongzhihong 已提交
330
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
331 332
};

Q
qijun 已提交
333 334
class OpKernel {
 public:
Q
qijun 已提交
335
  /**
336
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
337 338
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
339
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
340 341
   */

342
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
343 344 345 346

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
347 348
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
349 350
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
351

Y
Yu Yang 已提交
352
    OpKernelKey() = default;
L
liaogang 已提交
353
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
354 355 356
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
357 358 359
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
360 361 362 363 364 365 366 367 368 369 370
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
371

Y
Yu Yang 已提交
372 373 374 375
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

376
  void InferShape(const Scope& scope) const override {
377
    InferShape(InferShapeContext(*this, scope));
378 379
  }

Y
Yu Yang 已提交
380
  void Run(const Scope& scope,
Y
Yu Yang 已提交
381
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
382
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
383
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
384 385
  }

Y
Yu Yang 已提交
386 387 388 389
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
390
  }
Y
Yan Chunwei 已提交
391

392 393 394 395 396 397
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
398
 protected:
399
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
400 401 402 403
};

}  // namespace framework
}  // namespace paddle