activation.py 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
21
    'Hardswish',
W
WangXi 已提交
22
    'Tanh',
23 24
    'Hardtanh',
    'PReLU',
25
    'ReLU',
26 27
    'ReLU6',
    'SELU',
C
ceci3 已提交
28
    'LeakyReLU',
29
    'Sigmoid',
M
minghaoBD 已提交
30
    'Silu',
31
    'Hardsigmoid',
32
    'Softmax',
33 34 35
    'Softplus',
    'Softshrink',
    'Softsign',
36
    'Swish',
37
    'Tanhshrink',
38
    'ThresholdedReLU',
39
    'LogSigmoid',
40
    'LogSoftmax',
41
    'Maxout',
42 43
]

44 45 46
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
47 48
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
Q
Qi Li 已提交
49
from paddle.framework import get_default_dtype
50
from .. import functional as F
51 52


53
class ELU(layers.Layer):
54
    r"""
55 56
    ELU Activation.

57
    .. math::
58

59 60 61 62 63 64
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
65

66 67 68
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
69

70 71 72
    Examples:
        .. code-block:: python

73
            import paddle
74

Z
zhupengyang 已提交
75
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
76 77 78 79
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
80 81 82 83 84 85 86 87 88 89
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

90 91 92 93
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

94 95

class GELU(layers.Layer):
96
    r"""
97 98 99 100
    GELU Activation.

    If approximate is True

101
    .. math::
102 103 104 105 106

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

107
    .. math::
108 109 110 111 112 113 114

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
115

116 117 118
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
119

120 121 122
    Examples:
        .. code-block:: python

123 124
            import paddle
            import numpy as np
125

126
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
127

128 129
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
130

131 132
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
133 134 135 136 137 138 139 140 141 142
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

143 144 145 146
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

147

148
class Hardshrink(layers.Layer):
149
    r"""
150 151 152 153 154
    Hardshrink Activation

    .. math::

        hardshrink(x)=
155 156 157 158 159 160 161
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
162 163 164 165 166 167 168 169 170 171 172 173 174 175

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

176
            import paddle
177

Z
zhupengyang 已提交
178
            x = paddle.to_tensor([-1, 0.3, 2.5])
179 180
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
181 182 183 184 185 186 187 188
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
189
        return F.hardshrink(x, self._threshold, self._name)
190

191 192 193 194
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

195

196
class Hardswish(layers.Layer):
197
    r"""
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

241 242 243 244
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

245

W
WangXi 已提交
246
class Tanh(layers.Layer):
247
    r"""
W
WangXi 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    Tanh Activation.

    .. math::
        Tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
271
            print(out)
W
WangXi 已提交
272 273 274 275 276 277 278 279 280 281
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

282 283 284 285
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
286

287
class Hardtanh(layers.Layer):
288
    r"""
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
304

305 306 307
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
308

309 310 311 312 313
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
314
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
315
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
316
            out = m(x) # [-1., 0.3, 1.]
317 318 319 320 321 322 323 324 325 326 327
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

328 329 330 331
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

332 333 334 335 336 337 338 339 340 341 342

class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
343
            1 - a single parameter `alpha` is used for all input channels;
344 345 346
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
347
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
348
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
349 350
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
351

352
    Shape:
Q
Qi Li 已提交
353
        - input: Tensor with any shape. Default dtype is float32.
354
        - output: Tensor with the same shape as input.
355

356 357 358 359 360 361
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
362
            paddle.set_default_dtype("float64")
363 364 365 366 367 368

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
369
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
391 392
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
393
            is_bias=False,
Q
Qi Li 已提交
394
            default_initializer=Constant(self._init))
395 396 397 398

    def forward(self, x):
        return F.prelu(x, self._weight)

399 400 401 402 403
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'num_parameters={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._init, self._dtype, name_str)

404

405 406 407 408
class ReLU(layers.Layer):
    """
    ReLU Activation.

409
    .. math::
410

411
        ReLU(x) = max(x, 0)
412 413

    Parameters:
414 415 416 417 418 419
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
420

421 422 423
    Examples:
        .. code-block:: python

424
            import paddle
425

Z
zhupengyang 已提交
426
            x = paddle.to_tensor([-2., 0., 1.])
427 428
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
429 430
    """

431
    def __init__(self, name=None):
432
        super(ReLU, self).__init__()
433
        self._name = name
434

435 436
    def forward(self, x):
        return F.relu(x, self._name)
437

438 439 440 441
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

442

443 444 445 446 447 448
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

449
        ReLU6(x) = min(max(0,x), 6)
450 451 452 453 454 455 456 457 458 459 460 461

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

462 463
            import paddle
            import numpy as np
464

465 466 467
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
468 469 470 471 472 473 474 475 476
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

477 478 479 480
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

481 482

class SELU(layers.Layer):
483
    r"""
484 485 486 487
    SELU Activation

    .. math::

488 489 490 491 492
        SELU(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
493 494

    Parameters:
495 496
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
497 498 499 500 501 502 503 504 505 506
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

507 508
            import paddle
            import numpy as np
509

510
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
511 512
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
513 514 515 516 517 518 519 520 521 522 523 524 525 526
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

527 528 529 530 531
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

532

C
ceci3 已提交
533
class LeakyReLU(layers.Layer):
534
    r"""
C
ceci3 已提交
535 536
    Leaky ReLU Activation.

537
    .. math::
C
ceci3 已提交
538

539
        LeakyReLU(x)=
540 541 542 543 544 545
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
C
ceci3 已提交
546 547

    Parameters:
548 549
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
550 551
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
552

553 554 555
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
556

C
ceci3 已提交
557 558 559
    Examples:
        .. code-block:: python

560
            import paddle
C
Chen Long 已提交
561
            import numpy as np
562

563
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
564
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
565
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
566 567
    """

568
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
569
        super(LeakyReLU, self).__init__()
570
        self._negative_slope = negative_slope
571
        self._name = name
C
ceci3 已提交
572

573
    def forward(self, x):
574
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
575

576 577 578 579
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
580

581 582
class Sigmoid(layers.Layer):
    """
583
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
584

585
    .. math::
S
swtkiwi 已提交
586

587
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
588

589 590
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
591

592 593
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
594 595

    Returns:
596
        A callable object of Sigmoid.
597

598
    Examples:
599

600 601
        .. code-block:: python

602 603 604
          import paddle

          m = paddle.nn.Sigmoid()
605 606
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
607 608
    """

609
    def __init__(self, name=None):
610
        super(Sigmoid, self).__init__()
611
        self.name = name
612

613 614
    def forward(self, x):
        return F.sigmoid(x, self.name)
615

616 617 618 619
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

620

621
class Hardsigmoid(layers.Layer):
622
    r"""
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
            &x/6 + 1/2, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
655
          m = paddle.nn.Hardsigmoid()
656 657 658 659 660 661 662 663 664
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
665
        return F.hardsigmoid(x, name=self.name)
666

667 668 669 670
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

671

672
class Softplus(layers.Layer):
673
    r"""
674 675 676 677
    Softplus Activation

    .. math::

678 679
        Softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
680 681

    Parameters:
682 683
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
684 685 686 687 688 689 690 691 692 693
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

694 695
            import paddle
            import numpy as np
696

697 698 699
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
700 701 702 703 704 705 706 707 708 709 710
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

711 712 713 714 715
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

716 717

class Softshrink(layers.Layer):
718
    r"""
719 720 721 722
    Softshrink Activation

    .. math::

723 724 725 726 727
        Softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
728 729

    Parameters:
730
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
731 732 733 734 735 736 737 738 739 740
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

741 742
            import paddle
            import numpy as np
743

744 745 746
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
747 748 749 750 751 752 753 754 755 756
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

757 758 759 760
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

761 762

class Softsign(layers.Layer):
763
    r"""
764 765 766 767
    Softsign Activation

    .. math::

768
        Softsign(x) = \\frac{x}{1 + |x|}
769 770 771 772 773 774 775 776 777 778 779 780

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

781 782
            import paddle
            import numpy as np
783

784 785 786
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
787 788 789 790 791 792 793 794 795
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

796 797 798 799
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

800

801
class Swish(layers.Layer):
802
    r"""
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    Swish Activation.

    .. math::

        Swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

835 836 837 838
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

839

840 841 842 843 844 845
class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

846
        Tanhshrink(x) = x - tanh(x)
847 848 849 850 851 852 853 854 855 856 857 858

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

859 860
            import paddle
            import numpy as np
861

862 863 864
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
865 866 867 868 869 870 871 872 873
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

874 875 876 877
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

878

879
class ThresholdedReLU(layers.Layer):
880
    r"""
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    Thresholded ReLU Activation

    .. math::

        ThresholdedReLU(x) = \\begin{cases}
                               x, \\text{if } x > threshold \\\\
                               0, \\text{otherwise}
                              \\end{cases}

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

918 919 920 921
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

922

M
minghaoBD 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
class Silu(layers.Layer):
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


961
class LogSigmoid(layers.Layer):
962
    r"""
963
    LogSigmoid Activation.
964

965
    .. math::
966

967
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
968 969 970 971 972

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
973

974 975 976
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
977

978 979 980
    Examples:
        .. code-block:: python

981
            import paddle
982

983
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
984 985
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
986 987 988 989 990 991 992
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
993
        return F.log_sigmoid(x, self._name)
994

995 996 997 998
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

999

1000
class Softmax(layers.Layer):
1001
    r"""
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1122 1123 1124 1125
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1126

1127
class LogSoftmax(layers.Layer):
1128
    r"""
1129 1130 1131 1132
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

Z
zhupengyang 已提交
1133 1134 1135 1136
        \\begin{aligned} 
        Out[i, j] &= log(softmax(x)) \\\\
        &= log(\\frac{\\exp(X[i, j])}{\\sum_j(\\exp(X[i, j])})
        \\end{aligned}
1137 1138

    Parameters:
1139 1140 1141 1142 1143 1144
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1145

1146 1147 1148
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1149 1150 1151 1152

    Examples:
        .. code-block:: python

1153 1154
            import paddle

Z
zhupengyang 已提交
1155 1156 1157 1158 1159 1160
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1161 1162 1163 1164 1165 1166 1167 1168 1169
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1170 1171
    """

1172
    def __init__(self, axis=-1, name=None):
1173 1174
        super(LogSoftmax, self).__init__()
        self._axis = axis
1175
        self._name = name
1176

1177 1178
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1179

1180 1181 1182 1183
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1184 1185

class Maxout(layers.Layer):
1186
    r"""
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1244 1245 1246 1247

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)