test_warpctc_op.py 23.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yiqun Liu 已提交
17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
25 26
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
27

L
Li Fuchen 已提交
28 29
paddle.enable_static()

30
CUDA_BLOCK_SIZE = 32
31

Y
Yiqun Liu 已提交
32 33

class CTCForward(object):
34

35 36
    def __init__(self, softmax, softmax_lod, labels, labels_lod, num_classes,
                 batch_size, blank, norm_by_times):
Y
Yiqun Liu 已提交
37 38 39 40 41 42 43 44
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
45 46
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
47

48 49
        self.loss = np.zeros([self.batch_size, 1], dtype=softmax.dtype)
        self.gradient = np.zeros(self.softmax.shape, dtype=softmax.dtype)
Y
Yiqun Liu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
119 120
        log_acts = np.zeros([total_times, self.num_classes],
                            dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
121 122 123 124 125
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
126 127
        forward_vars = np.zeros([total_times, total_segments],
                                dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
145
                    label_idx = j // 2
Y
Yiqun Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
169 170
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
171
        for i in range(self.batch_size):
172 173 174 175 176 177
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

178 179
                softmax_a_sequence = self.softmax[
                    softmax_start_i:softmax_end_i, :]
180 181 182 183 184 185 186 187 188 189 190
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
                softmax_a_sequence = self.softmax[:self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[:self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)

Y
Yiqun Liu 已提交
191 192 193
        return self.loss


Z
Zhong Hui 已提交
194 195 196 197 198 199 200 201 202 203
def python_api(logits,
               label,
               logits_length=None,
               labels_length=None,
               blank=0,
               norm_by_times=False):
    return paddle.fluid.layers.warpctc(logits, label, blank, norm_by_times,
                                       logits_length, labels_length)


Y
Yiqun Liu 已提交
204
class TestWarpCTCOp(OpTest):
205

206 207
    def config(self):
        self.batch_size = 4
208
        self.num_classes = 12
209 210
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
211 212 213
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
214 215
    def setUp(self):
        self.op_type = "warpctc"
216
        self.config()
Y
Yiqun Liu 已提交
217

218 219
        logits = np.random.uniform(
            0.1, 1.0,
220
            [sum(self.logits_lod[0]), self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
221 222
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
223 224 225 226
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_lod[0]), 1],
                                   dtype="int32")
Y
Yiqun Liu 已提交
227

228
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
229 230
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
Y
Yiqun Liu 已提交
231 232 233
        loss = ctc.forward()

        max_sequence_length = 0
234
        for i in range(self.batch_size):
235 236
            max_sequence_length = max(max_sequence_length,
                                      self.logits_lod[0][i])
237
        self.gradient = np.zeros(
238
            [max_sequence_length, self.batch_size, self.num_classes],
239
            dtype=logits.dtype)
Y
Yiqun Liu 已提交
240 241

        self.inputs = {
242 243
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
244 245
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
246 247 248 249
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
250 251

    def test_check_output(self):
252
        self.check_output()
Y
Yiqun Liu 已提交
253

W
wanghaoshuang 已提交
254
    def test_check_grad(self):
255
        self.outputs['WarpCTCGrad'] = self.gradient
256
        if core.is_compiled_with_rocm():
257 258 259 260
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.009,
                            check_dygraph=False)
261
        else:
262 263 264 265
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.007,
                            check_dygraph=False)
Y
Yiqun Liu 已提交
266

267

268
class TestWarpCTCOpCase1(TestWarpCTCOp):
269

270 271 272
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
273 274
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
275
        self.blank = self.num_classes - 1
276
        self.norm_by_times = False
W
Wu Yi 已提交
277 278


279
class TestWarpCTCOpWithPadding(OpTest):
280

281 282 283 284 285 286 287 288 289 290 291 292
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
Z
Zhong Hui 已提交
293 294
        self.python_api = python_api
        self.python_out_sig = ["Loss"]
295 296 297 298 299 300 301
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
302 303 304 305
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_length), 1],
                                   dtype="int32")
306 307

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
308 309
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
310 311 312 313 314 315 316 317 318
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
319
            dtype=logits.dtype)
320 321 322 323 324 325 326 327 328 329 330 331 332

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
333 334
        new_labels = np.zeros([self.batch_size, max_target_seq_length],
                              dtype="int32")
335 336 337 338 339 340 341 342 343

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
344
            dtype=logits.dtype)
345 346 347

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
348
            "Label": new_labels,
349 350 351 352 353 354 355 356 357 358
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
Z
Zhong Hui 已提交
359
        self.check_output(check_eager=True)
360 361 362

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
363
        if core.is_compiled_with_rocm():
364 365 366 367
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.009,
                            check_dygraph=False)
368
        else:
369 370 371 372
            self.check_grad(["Logits"],
                            "Loss",
                            max_relative_error=0.007,
                            check_dygraph=False)
373 374 375


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
376

377 378 379 380 381 382 383
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
384
        self.blank = self.num_classes - 1
385
        self.norm_by_times = False
386

Y
Yiqun Liu 已提交
387

388
class TestWarpCTCOpFp64(OpTest):
389

390 391 392 393 394 395 396 397 398 399 400 401
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 5, 5]]
        self.labels_lod = [[3, 1, 4, 2]]
        self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
Z
Zhong Hui 已提交
402 403
        self.python_api = python_api
        self.python_out_sig = ["Loss"]
404 405 406 407 408 409 410
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float64")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
411 412 413 414
        labels = np.random.randint(0,
                                   self.num_classes - 1,
                                   [sum(self.labels_length), 1],
                                   dtype="int32")
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
442 443
        new_labels = np.zeros([self.batch_size, max_target_seq_length],
                              dtype="int32")
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        self.inputs = {
            "Logits": new_logits,
            "Label": new_labels,
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
Z
Zhong Hui 已提交
468
        self.check_output(check_eager=True)
469 470 471

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
Z
Zhong Hui 已提交
472
        self.check_grad(["Logits"], "Loss", check_eager=True)
473 474


475
class TestWarpCTCOpError(unittest.TestCase):
476

477 478
    def test_errors(self):
        with program_guard(Program(), Program()):
479 480 481 482 483 484
            logits = fluid.data(name='logits',
                                shape=[5, 16, 6],
                                dtype='float32')
            logits_length = fluid.data(name='logits_length',
                                       shape=[None],
                                       dtype='int64')
485
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
486 487 488
            label_length = fluid.data(name='labels_length',
                                      shape=[None],
                                      dtype='int64')
489 490

            def test_logits_Variable():
491
                logits_data = np.random.rand(5, 16, 6).astype(logits.dtype)
492 493 494 495
                fluid.layers.warpctc(input=logits_data,
                                     label=label,
                                     input_length=logits_length,
                                     label_length=label_length)
496 497 498 499 500

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
501 502 503 504
                fluid.layers.warpctc(input=logits,
                                     label=label_data,
                                     input_length=logits_length,
                                     label_length=label_length)
505 506 507 508 509

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
510 511 512 513
                fluid.layers.warpctc(input=logits,
                                     label=label,
                                     input_length=logits_length_data,
                                     label_length=label_length)
514 515 516 517 518

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
519 520 521 522
                fluid.layers.warpctc(input=logits,
                                     label=label,
                                     input_length=logits_length,
                                     label_length=label_length_data)
523 524 525

            self.assertRaises(TypeError, test_label_len_Variable)

526
    def test_dygraph_errors(self):
527

528 529 530 531 532
        def test_dygraph_with_lod():

            logits = np.random.uniform(0.1, 1.0, [20, 15]).astype("float32")
            # labels should not be blank
            labels = np.random.randint(0, 15 - 1, [15, 1], dtype="int32")
L
Li Fuchen 已提交
533 534
            softmax = paddle.to_tensor(logits)
            labels = paddle.to_tensor(labels)
535 536 537 538 539 540 541

            fluid.layers.warpctc(input=softmax, label=labels)

        paddle.disable_static()
        self.assertRaises(ValueError, test_dygraph_with_lod)
        paddle.enable_static()

542

543
class TestCTCLossAPICase(unittest.TestCase):
544

545 546 547 548 549 550 551 552
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

553 554 555 556
        logits = np.random.uniform(
            0.1, 1.0,
            [max(self.logits_length), self.batch_size, self.num_classes
             ]).astype("float32")
557 558 559 560
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
561 562
            self.num_classes - 1,
            [self.batch_size, max(self.labels_length)],
563 564 565 566 567 568 569 570
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
571 572 573 574
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
575 576 577 578 579 580
        loss_pd_mean = F.ctc_loss(softmax,
                                  labels,
                                  logits_length,
                                  labels_length,
                                  blank=self.blank,
                                  reduction='mean')
581 582
        loss_pd_mean = loss_pd_mean.numpy()

583 584 585 586 587 588
        loss_pd_sum = F.ctc_loss(softmax,
                                 labels,
                                 logits_length,
                                 labels_length,
                                 blank=self.blank,
                                 reduction='sum')
589 590 591 592 593 594
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

595 596 597 598 599
        np.testing.assert_allclose(loss_pd_mean,
                                   loss_np_mean,
                                   rtol=1e-05,
                                   atol=1)
        np.testing.assert_allclose(loss_pd_sum, loss_np_sum, rtol=1e-05, atol=1)
600 601 602 603 604 605 606 607 608

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

609 610 611 612
        logits = np.random.uniform(
            0.1, 1.0,
            [max(self.logits_length), self.batch_size, self.num_classes
             ]).astype("float32")
613 614 615 616
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
617 618
            self.num_classes,
            [self.batch_size, max(self.labels_length)],
619 620 621 622 623 624 625 626
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
627 628 629 630
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
631

632 633 634
        loss_pd = paddle.nn.CTCLoss(self.blank,
                                    'none')(softmax, labels, logits_length,
                                            labels_length)
635 636 637 638
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

639
        np.testing.assert_allclose(loss_pd, loss_np, rtol=1e-05, atol=1)
640 641


Y
Yiqun Liu 已提交
642 643
if __name__ == "__main__":
    unittest.main()