engine.h 29.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34 35
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
36
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
38
#include "paddle/fluid/inference/utils/singleton.h"
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/phi/common/data_type.h"
41 42
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44 45 46 47 48

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
49 50 51 52
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

53 54 55 56 57 58 59 60 61 62 63
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
64 65
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
66 67 68 69
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
#endif
70 71 72 73 74 75 76 77 78 79
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
80 81
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
82
                            bool with_dynamic_shape = false) {
83 84
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
85
                    platform::errors::InvalidArgument(
86
                        "TensorRT's tensor input requires at least 1 "
87
                        "dimensions, but input %s has %d dims.",
88 89
                        input,
                        shape.size()));
W
wenbin 已提交
90

91 92 93 94 95 96 97 98 99 100 101 102 103
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
104 105
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
106 107 108 109
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
110 111
            input,
            ShapeStr(shape)));
112
      }
113
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
114 115 116 117 118
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
119 120
            input,
            ShapeStr(shape)));
W
wenbin 已提交
121 122
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
123
    } else if (shape.size() == 3UL) {
124 125 126 127
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
128 129
            input,
            ShapeStr(shape)));
130
      }
131
      return nvinfer1::Dims2(shape[1], shape[2]);
132 133 134 135 136
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
137 138
            input,
            ShapeStr(shape)));
139 140 141 142 143
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
144
    }
145
    // static shape doesn't support 1D op so far.
146 147
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
148 149 150
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
151 152
                          input,
                          ShapeStr(shape)));
153 154 155 156 157 158 159

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
160 161
  } else {
    if (shape.size() == 4UL) {
162
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
163 164 165
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
166 167 168 169 170 171
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
172 173
  }
}
174
}  // namespace
175

N
nhzlx 已提交
176
class TRTInt8Calibrator;
W
wanghuancoder 已提交
177

Y
Yan Chunwei 已提交
178 179 180
/*
 * TensorRT Engine.
 *
181
 * There are two alternative ways to use it, one is to build from a paddle
182
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
183
 */
184 185
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
186
  using ShapeMapType = std::map<std::string, std::vector<int>>;
187
  using PredictorID = int;
188

Y
Yan Chunwei 已提交
189 190 191 192
 public:
  // Weight is model parameter.
  class Weight {
   public:
193
    Weight() = default;
194
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
195 196 197 198
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
199
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
200

201 202 203 204 205 206 207 208
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

209 210
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
211 212 213 214
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
215
  TensorRTEngine(
216
      int max_batch,
217
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
218
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
219 220
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
221 222 223
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
224 225 226
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
227
      bool disable_trt_plugin_fp16 = false,
228
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
229
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
230 231
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
232
        precision_(precision),
N
nhzlx 已提交
233
        calibrator_(calibrator),
N
nhzlx 已提交
234
        device_id_(device_id),
235 236 237
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
238 239 240
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
241
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
242
        model_precision_(model_precision),
243 244 245 246
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
247 248
          min_input_shape_.size(),
          max_input_shape_.size(),
249 250 251
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
252 253
              min_input_shape_.size(),
              max_input_shape_.size()));
254
      PADDLE_ENFORCE_EQ(
255 256
          min_input_shape_.size(),
          optim_input_shape_.size(),
257 258 259
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
260 261
              min_input_shape_.size(),
              optim_input_shape_.size()));
262 263 264 265 266 267 268
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
269
    dy::initLibNvInferPlugins(&logger, "");
270
  }
Y
Yan Chunwei 已提交
271

272 273 274 275 276 277 278 279 280
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
281

282
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
283 284 285 286 287
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
288 289
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
290
                     const std::string& name);
L
Luo Tao 已提交
291 292
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
293
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
294

295
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
296 297
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
298 299 300
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
301
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
302 303

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
304
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
305 306 307 308

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
309
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
310 311 312 313 314 315 316 317 318 319 320
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

321 322 323 324 325
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
326 327 328
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
329
  }
N
nhzlx 已提交
330 331

  nvinfer1::IHostMemory* Serialize() {
332 333 334 335
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
336
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
337
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
338 339 340 341 342 343
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
344 345 346
    return ihost_memory_.get();
  }

347
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
348

349 350
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
351 352 353 354 355 356 357

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
358
  int GetDeviceId() { return device_id_; }
359

360
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
361 362
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
363 364 365 366 367

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

368 369 370 371
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

372 373 374
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
375

376 377
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
378
                          const phi::DenseTensor& weight_tensor);
379

380 381
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
382
                          const phi::DenseTensor& weight_tensor);
383 384 385

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
386
                      const phi::DenseTensor& weight_tensor);
387

388 389 390 391 392 393 394 395
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
396 397 398 399 400
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
401
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
402
      weight_map;
Y
Yan Chunwei 已提交
403

404 405 406
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
407
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
408 409
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
410
    std::string splitter = "__";
411 412 413 414 415 416 417 418
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
419 420 421
    suffix_counter += 1;
  }

422
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
423 424
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
425
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
426 427 428
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
429 430 431 432 433 434
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
435 436 437 438 439 440
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

441 442 443 444 445 446 447
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
448 449
  void Execute(int batch_size,
               std::vector<void*>* buffers,
450 451
               cudaStream_t stream = nullptr);

452
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
453 454 455 456

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
457 458 459
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
460 461 462 463 464 465 466 467 468

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
469 470
          min_input_shape_.count(name),
          true,
471 472
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
473 474
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
475 476 477 478
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
479 480 481 482
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

514
  bool use_varseqlen() { return use_varseqlen_; }
515
  bool with_ernie() { return with_ernie_; }
516
  bool with_interleaved() { return with_interleaved_; }
517 518 519 520 521 522
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
523
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
524
  bool with_dynamic_shape() { return with_dynamic_shape_; }
525
  AnalysisConfig::Precision precision() { return precision_; }
526

527
#if IS_TRT_VERSION_GE(6000)
528
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
529 530
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
531
      plugin::DynamicPluginTensorRT* plugin) {
532 533 534 535 536
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
557 558
          attrs_.count(attr_name),
          0,
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
577 578
        attrs_.count(attr_name),
        0,
579 580 581 582 583 584 585 586
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
587 588
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
589 590 591
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
592 593
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
610 611
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
612 613 614 615 616
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
617
  void SetProfileNum(int num) { max_profile_num_ = num; }
618 619 620 621

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
622
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
623

624 625 626 627
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

Y
Yan Chunwei 已提交
628
 private:
N
nhzlx 已提交
629 630 631 632
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
633 634
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
635

Y
Yan Chunwei 已提交
636 637
  // the max batch size
  int max_batch_;
638 639
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
640
  // the max memory size the engine uses
641
  int64_t max_workspace_;
642

Z
Zhaolong Xing 已提交
643
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
644 645 646
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
647

648 649 650
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
651
  int device_id_;
W
wenbin 已提交
652 653
  int max_profile_num_{1};
  int cur_profile_num_{0};
654
  std::unordered_map<PredictorID, int> profile_index_;
655 656 657
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
658 659 660
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
661
  bool disable_trt_plugin_fp16_{false};
662
  phi::DataType model_precision_{phi::DataType::FLOAT32};
663
  bool use_varseqlen_{false};
664 665
  bool use_dla_{false};
  int dla_core_{0};
666
  bool with_ernie_{false};
667
  bool with_interleaved_{false};
668 669
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
670 671 672
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
673 674
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
675

676
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
677
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
678
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
679 680 681 682

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
683 684 685 686 687
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
688 689 690 691 692 693
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
694
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
695
      infer_context_;
N
nhzlx 已提交
696
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
697
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
698

699
  std::unordered_map<std::string, paddle::any> attrs_;
700 701
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

702 703 704
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
705
  int binding_num_;
706
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
707
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
708
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
709
#endif
710
  std::mutex mutex_;
711
  bool use_inspector_;
712 713 714

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
715 716
};  // class TensorRTEngine

717
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
718 719 720 721 722 723 724 725 726
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
727
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
728
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
729

730
class TRTEngineManager {
731 732 733
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

734
 public:
735 736 737 738 739
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

740
  bool Has(const std::string& name) const {
741
    std::lock_guard<std::mutex> lock(mutex_);
742 743 744 745 746
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
747
    std::lock_guard<std::mutex> lock(mutex_);
748 749 750
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
751
  TensorRTEngine* Create(
752 753
      std::string name,
      int max_batch,
754
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
755
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
756 757
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
758 759 760
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
761 762 763
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
764
      bool disable_trt_plugin_fp16 = false,
765
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
766
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
767 768 769 770 771 772 773 774
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
775 776 777
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
778
                                 disable_trt_plugin_fp16,
779
                                 model_precision,
780
                                 logger);
781
    std::lock_guard<std::mutex> lock(mutex_);
782 783 784 785 786
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
787
    std::lock_guard<std::mutex> lock(mutex_);
788 789 790
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
791
    engines_.clear();
792 793
  }

W
Wilber 已提交
794
  void DeleteKey(const std::string& key) {
795
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
796 797 798 799 800 801 802
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      // context_memory_[predictor_id].reset(context_memory.release());
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

841
 private:
842 843 844 845 846 847 848 849 850 851 852 853
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
854 855 856
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
857 858 859
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle