engine.h 29.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
W
wanghuancoder 已提交
27

28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
N
nhzlx 已提交
30
#include "paddle/fluid/framework/tensor.h"
31
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
32
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
33 34
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
35
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
41 42 43 44 45

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
46 47 48 49
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

50 51 52 53 54 55 56 57 58 59 60
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
61 62
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
63 64 65 66 67 68 69 70 71 72
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
73 74
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
75
                            bool with_dynamic_shape = false) {
76 77
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
78
                    platform::errors::InvalidArgument(
79
                        "TensorRT's tensor input requires at least 1 "
80
                        "dimensions, but input %s has %d dims.",
81 82
                        input,
                        shape.size()));
W
wenbin 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
97 98
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
99 100 101 102
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
103 104
            input,
            ShapeStr(shape)));
105
      }
106
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
107 108 109 110 111
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
112 113
            input,
            ShapeStr(shape)));
W
wenbin 已提交
114 115
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
116
    } else if (shape.size() == 3UL) {
117 118 119 120
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
121 122
            input,
            ShapeStr(shape)));
123
      }
124
      return nvinfer1::Dims2(shape[1], shape[2]);
125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
130 131
            input,
            ShapeStr(shape)));
132 133 134 135 136
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
137
    }
138
    // static shape doesn't support 1D op so far.
139 140
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
141 142 143
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
144 145
                          input,
                          ShapeStr(shape)));
146 147 148 149 150 151 152

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
153 154
  } else {
    if (shape.size() == 4UL) {
155
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
156 157 158
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
159 160 161 162 163 164
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
165 166
  }
}
167
}  // namespace
168

N
nhzlx 已提交
169
class TRTInt8Calibrator;
W
wanghuancoder 已提交
170

Y
Yan Chunwei 已提交
171 172 173 174
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
175
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
176
 */
177 178
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
179
  using ShapeMapType = std::map<std::string, std::vector<int>>;
180
  using PredictorID = int;
181

Y
Yan Chunwei 已提交
182 183 184 185
 public:
  // Weight is model parameter.
  class Weight {
   public:
186
    Weight() = default;
187
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
188 189 190 191
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
192
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
193

194 195 196 197 198 199 200 201
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

202 203
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
204 205 206 207
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
208
  TensorRTEngine(
209
      int max_batch,
210
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
211
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
212 213
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
214 215 216
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
217
      bool disable_trt_plugin_fp16 = false,
218
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
219
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
220 221
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
222
        precision_(precision),
N
nhzlx 已提交
223
        calibrator_(calibrator),
N
nhzlx 已提交
224
        device_id_(device_id),
225 226 227
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
228
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
229
        model_precision_(model_precision),
230 231 232 233
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
234 235
          min_input_shape_.size(),
          max_input_shape_.size(),
236 237 238
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
239 240
              min_input_shape_.size(),
              max_input_shape_.size()));
241
      PADDLE_ENFORCE_EQ(
242 243
          min_input_shape_.size(),
          optim_input_shape_.size(),
244 245 246
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
247 248
              min_input_shape_.size(),
              optim_input_shape_.size()));
249 250 251 252 253 254 255
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
256
    dy::initLibNvInferPlugins(&logger, "");
257
  }
Y
Yan Chunwei 已提交
258

259 260 261 262 263 264 265 266 267
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
268

269
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
270 271 272 273 274
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
275 276
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
277
                     const std::string& name);
L
Luo Tao 已提交
278 279
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
280
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
281

282
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
283 284 285
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
286
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
287 288

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
289
  nvinfer1::IExecutionContext* context() {
290 291 292 293 294 295 296 297 298
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
299
    std::unique_lock<std::mutex> lock(mutex_);
300
    if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
301 302 303 304
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
305 306 307
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
308 309
      infer_context_[predictor_id_per_thread].reset(
          infer_engine_->createExecutionContext());
W
wenbin 已提交
310 311 312
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
313 314
          infer_context_[predictor_id_per_thread]->setOptimizationProfile(
              cur_profile_num_);
W
wenbin 已提交
315
        }
316
        profile_index_[predictor_id_per_thread] = cur_profile_num_;
W
wenbin 已提交
317 318
        ++cur_profile_num_;
      }
319
    }
320
    return infer_context_[predictor_id_per_thread].get();
321
  }
W
wenbin 已提交
322 323 324

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
325 326 327 328 329 330 331 332 333
#ifndef PADDLE_WITH_TESTING
      PADDLE_ENFORCE_GT(
          predictor_id_per_thread,
          -1,
          platform::errors::InvalidArgument(
              "thread local var predictor_id_per_thread must be "
              "initialized to >= 0, but now predictor_id_per_thread = %d",
              predictor_id_per_thread));
#endif
W
wenbin 已提交
334
      std::unique_lock<std::mutex> lock(mutex_);
335
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
336 337 338 339 340 341 342 343 344 345 346
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

347 348 349 350 351
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
352 353 354 355 356 357 358 359 360 361 362 363
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
364
  }
N
nhzlx 已提交
365 366

  nvinfer1::IHostMemory* Serialize() {
367 368 369 370
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
371
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
372
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
373 374 375 376 377 378
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
379 380 381 382
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
383
    freshDeviceId();
N
nhzlx 已提交
384
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

408 409
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
410

411 412 413 414 415 416 417 418
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
419

W
wenbin 已提交
420
    binding_num_ = infer_engine_->getNbBindings();
421
    GetEngineInfo();
N
nhzlx 已提交
422 423
  }

424 425
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
426 427 428 429 430 431 432

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
433
  int GetDeviceId() { return device_id_; }
434

435
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
436 437
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
438 439 440 441 442

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

443 444 445 446
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

447 448 449
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
450

451 452 453 454
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

455 456 457 458 459 460 461 462
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
                      const framework::Tensor& weight_tensor);

463 464 465 466 467 468 469 470
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
471 472 473 474 475 476 477
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
478

479 480 481 482 483 484
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
485
    std::string splitter = "__";
486 487 488 489 490 491 492 493
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
494 495 496
    suffix_counter += 1;
  }

497
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
498 499
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
500
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
501 502 503
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
504 505 506 507 508 509
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
510 511 512 513 514 515
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

516 517 518 519 520 521 522
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
523 524
  void Execute(int batch_size,
               std::vector<void*>* buffers,
525 526
               cudaStream_t stream = nullptr);

527
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
528 529 530 531

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
532 533 534 535 536 537 538 539 540

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
541 542
          min_input_shape_.count(name),
          true,
543 544
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
545 546
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
547 548 549 550
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
551 552 553 554
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

586
  bool use_varseqlen() { return use_varseqlen_; }
587
  bool with_ernie() { return with_ernie_; }
588
  bool with_interleaved() { return with_interleaved_; }
589 590 591 592 593 594
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
595
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
596
  bool with_dynamic_shape() { return with_dynamic_shape_; }
597
  AnalysisConfig::Precision precision() { return precision_; }
598

599
#if IS_TRT_VERSION_GE(6000)
600
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
601 602
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
603
      plugin::DynamicPluginTensorRT* plugin) {
604 605 606 607 608
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
629 630
          attrs_.count(attr_name),
          0,
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
649 650
        attrs_.count(attr_name),
        0,
651 652 653 654 655 656 657 658
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
659 660
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
661 662 663
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
664 665
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
682 683
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
684 685 686 687 688
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
689
  void SetProfileNum(int num) { max_profile_num_ = num; }
690 691 692 693

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
694

Y
Yan Chunwei 已提交
695
 private:
N
nhzlx 已提交
696 697 698 699 700
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
701 702
  // the max batch size
  int max_batch_;
703 704
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
705
  // the max memory size the engine uses
706
  int64_t max_workspace_;
707

Z
Zhaolong Xing 已提交
708
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
709 710 711
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
712

N
nhzlx 已提交
713
  int device_id_;
W
wenbin 已提交
714 715
  int max_profile_num_{1};
  int cur_profile_num_{0};
716
  std::unordered_map<PredictorID, int> profile_index_;
717 718 719
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
720
  bool disable_trt_plugin_fp16_{false};
721
  phi::DataType model_precision_{phi::DataType::FLOAT32};
722
  bool use_varseqlen_{false};
723 724
  bool use_dla_{false};
  int dla_core_{0};
725
  bool with_ernie_{false};
726
  bool with_interleaved_{false};
727 728
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
729 730 731
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
732 733
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
734

735
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
736
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
737
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
738 739 740 741

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
742 743 744 745 746
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
747 748 749 750 751 752
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
753
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
754
      infer_context_;
N
nhzlx 已提交
755
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
756
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
757

758
  std::unordered_map<std::string, paddle::any> attrs_;
759 760
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

761 762 763
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
764
  int binding_num_;
765
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
766
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
767
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
768
#endif
769
  std::mutex mutex_;
770
  bool use_inspector_;
771 772 773

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
774 775
};  // class TensorRTEngine

776
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
777 778 779 780 781 782 783 784 785
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
786
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
787
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
788

789 790 791 792 793 794 795 796 797 798 799 800
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
801
  TensorRTEngine* Create(
802 803
      std::string name,
      int max_batch,
804
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
805
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
806 807
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
808 809 810
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
811
      bool disable_trt_plugin_fp16 = false,
812
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
813
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
814 815 816 817 818 819 820 821 822
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
823
                                 model_precision,
824
                                 logger);
825 826 827 828 829 830 831 832 833 834
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
835 836 837 838 839 840 841 842
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

843 844 845 846
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
847 848 849
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle