pybind.cc 17.9 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
20
#include "paddle/framework/executor.h"
Q
qijun 已提交
21
#include "paddle/framework/feed_fetch_method.h"
22
#include "paddle/framework/framework.pb.h"
D
dzhwinter 已提交
23
#include "paddle/framework/init.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
33
#include "paddle/pybind/exception.h"
Q
qijun 已提交
34
#include "paddle/pybind/pybind.h"
35
#include "paddle/pybind/tensor_py.h"
36
#include "paddle/string/to_string.h"
37

D
Dong Zhihong 已提交
38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
40
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
41
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
42 43
#endif

Q
Qiao Longfei 已提交
44 45 46
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

47
namespace paddle {
48
namespace pybind {
49 50 51
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
52 53
}

Q
qijun 已提交
54
bool IsCompileGPU() {
55
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
56 57 58 59 60 61
  return false;
#else
  return true;
#endif
}

62
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
63
  py::module m("core", "C++ core of PaddlePaddle");
64

65 66 67 68
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
69 70
  BindException(m);

71 72 73
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
74
      .def("get_dims",
75
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
76
      .def("set_dims",
Q
qijun 已提交
77
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
78
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
79 80
           })
      .def("alloc_float",
Y
Yu Yang 已提交
81
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
82
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
83
           })
Q
qijun 已提交
84
      .def("alloc_float",
Y
Yu Yang 已提交
85
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
86
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
87 88
           })
      .def("alloc_int",
Y
Yu Yang 已提交
89
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
90
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
91
           })
Q
qijun 已提交
92
      .def("alloc_int",
Y
Yu Yang 已提交
93
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
94
             self.mutable_data<int>(place);
Q
qijun 已提交
95
           })
Y
Yu Yang 已提交
96 97
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
98
      .def("set", PyCPUTensorSetFromArray<double>)
99
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
100
      .def("set", PyCPUTensorSetFromArray<bool>)
101
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
102 103
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
104
      .def("set", PyCUDATensorSetFromArray<double>)
105
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
106
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
107
#endif
108
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
109 110 111 112 113
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
114

115
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
116 117
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
118 119 120
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
121
#ifndef PADDLE_WITH_CUDA
122
            new (&instance) LoDTensor(lod);
123
#else
Y
Yu Yang 已提交
124
             LoD new_lod;
125 126
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
127
             new (&instance) LoDTensor(new_lod);
128
#endif
129
          })
Y
Yu Yang 已提交
130
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
131
      .def("set_lod",
132
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
133
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
134
             self.set_lod(lod);
135
#else
Y
Yu Yang 已提交
136
             LoD new_lod;
137 138 139 140
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
141
           })
142
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
143
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
144
        return self.lod();
145 146 147 148 149
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
150
               [](Vector<size_t> item) ->
151 152 153 154 155 156 157 158
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
159 160
      });

Q
qijun 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
174 175 176 177 178 179 180 181 182
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
183 184 185 186 187 188 189 190 191 192 193
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
194

195
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
196 197 198

All parameter, weight, gradient are variables in Paddle.
)DOC")
199
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
200
      .def("set_int",
201 202
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
203 204 205 206 207 208 209
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
210
      .def("get_tensor",
211 212
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
213 214
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
215 216 217
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
218 219 220 221 222
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
223 224 225
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
226 227 228 229 230 231 232
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
233
      .def("get_net",
D
dongzhihong 已提交
234 235
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
236
           },
Y
Yu Yang 已提交
237
           py::return_value_policy::reference);
238

239
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
240
      .def("var",
241
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
242
             return self.Var(name);
Y
Yu Yang 已提交
243
           },
244
           py::return_value_policy::reference)
245
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
246
      .def(py::init<>())
247
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
248
           py::return_value_policy::reference)
Y
Yu Yang 已提交
249
      .def("drop_kids", &Scope::DropKids);
250

Y
Yu Yang 已提交
251 252
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
253 254
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
255 256 257 258 259 260 261 262 263 264
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
265 266
    return ret_values;
  });
F
fengjiayi 已提交
267
  m.def("get_grad_op_descs",
F
update  
fengjiayi 已提交
268 269 270 271
        [](const OpDescBind &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           std::unordered_map<std::string, std::string> &grad_to_var,
           const std::vector<BlockDescBind *> &grad_sub_block) {
F
fengjiayi 已提交
272 273 274 275 276 277 278 279 280 281 282
          std::vector<std::unique_ptr<OpDescBind>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                                 grad_sub_block);
          std::vector<OpDescBind *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(), grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDescBind> &p) { return p.release(); });
          return grad_op_desc_ptrs;
F
update  
fengjiayi 已提交
283
        });
284 285 286 287
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
288
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
289 290 291 292 293
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
294 295 296 297 298
  m.def("inference_optimize", [](ProgramDescBind &origin) {
    ProgramDesc pruned_desc;
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
299 300 301
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
302 303
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
304
  // clang-format off
Y
Yu Yang 已提交
305
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
306 307
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
308
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
309 310 311 312 313
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
314
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
315
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
316
#else
Q
qijun 已提交
317
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
318
#endif
Q
qijun 已提交
319
                  });
D
Dong Zhihong 已提交
320
// clang-format on
Q
qijun 已提交
321

D
Dong Zhihong 已提交
322 323 324
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
325 326 327
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
328

329 330 331
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
332

Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
344 345 346 347 348 349 350 351 352
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
353
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
354 355 356 357 358 359
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
360
      .def("run",
361
           [](OperatorBase &self, const Scope &scope,
362 363 364 365
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
366 367 368 369 370 371 372
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
373 374
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
375
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
376
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
377 378 379 380
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
381

Y
Yu Yang 已提交
382 383 384 385 386 387 388
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
389 390
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
391 392 393 394
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
395

Z
cond op  
zchen0211 已提交
396 397 398 399 400 401 402 403 404 405
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
406
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
407 408 409 410 411 412 413 414 415 416 417
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
418 419
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
420
      .def("run", &Executor::Run);
F
fengjiayi 已提交
421

422
  m.def("unique_integer", UniqueIntegerGenerator);
D
dzhwinter 已提交
423 424
  m.def("init_gflags", framework::InitGflags);
  m.def("init_devices", &framework::InitDevices);
425

Q
qijun 已提交
426
  m.def("is_compile_gpu", IsCompileGPU);
427
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
428
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
429

F
fengjiayi 已提交
430 431 432 433
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
434

Y
Yu Yang 已提交
435 436 437 438 439 440 441 442 443
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
461
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
462
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
463
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
464 465 466 467

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
468
#endif
Y
Yu Yang 已提交
469

470
  return m.ptr();
L
Luo Tao 已提交
471
}
472
}  // namespace pybind
473
}  // namespace paddle